Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1303-1310    DOI: 10.3785/j.issn.1008-973X.2025.06.021
能源与动力工程     
基于柔性传感器的管内LNG电容层析深度神经网络成像
田泽南(),高鑫鑫,张小斌*()
浙江大学 制冷与低温研究所,浙江 杭州 310027
Electrical capacitance tomography imaging of LNG inside pipes using deep neural networks based on flexible sensor
Zenan TIAN(),Xinxin GAO,Xiaobin ZHANG*()
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1901 KB)   HTML
摘要:

聚焦低温两相流的电容层析成像(ECT)相分布反演系统,对基于柔性电路板的柔性传感器与传统贴片传感器的采样稳定性进行对比. 训练适用于LNG-饱和甲烷蒸汽两相流相分布测量场景的深度神经网络(DNN-LNG). 就此算法开展数值模拟实验,将成像结果与传统算法结果对比,以评估算法性能. 进行替代工质实验,比较2个传感器方案,选择成像效果更好的柔性传感器与DNN-LNG组合,开展常温实验. 利用聚丙烯-空气替代LNG-饱和甲烷蒸汽两相流,检验柔性传感器与DNN-LNG算法在实际复杂流型成像应用中的性能,以此为基础进行液氮成像. 结果表明,柔性传感器能有效提升ECT系统相分布采样稳定性与反演精度,且其标准化的设计制造流程以及稳定的高安装精度能为ECT传感器的规模化制造提供解决方案. DNN-LNG成像网络能够极大消除伪影和畸变,并能获得清晰准确的成像结果. 柔性传感器与DNN-LNG成像方法的组合在LNG两相流成像方面具有广阔的应用前景.

关键词: 电容层析成像柔性电路板神经网络低温学液化天然气(LNG)    
Abstract:

The flexible sensor is an effective solution to solve the failure of conventional sensors at cryogenic conditions. The electrical capacitance tomography (ECT) phase distribution imaging system for cryogenic two-phase flow was focused on. The sampling stability of flexible sensors based on flexible circuit boards was compared with that of traditional patch sensors. A deep neural network (DNN-LNG) was trained to measure the phase distribution of LNG- saturated methane vapor two phase flow. Numerical simulation experiments were conducted to evaluate the model by comparing it with traditional algorithms. Alternative working medium experiments were conducted to compare the two sensor schemes, and the flexible sensor with a better imaging effect was selected to combine with DNN-LNG. A room-temperature experiment was conducted to substitute polypropylene-air as LNG-saturated methane vapor two-phase flow, testing the performance of the flexible sensor and DNN-LNG algorithm in imaging complex flow patterns. And then the liquid nitrogen imaging test was conducted. Results show that flexible sensors can effectively improve the sampling stability and inversion accuracy of ECT system phase distribution, and its standardized design and manufacturing process as well as the stable high installation accuracy provide a solution for the large-scale manufacturing of ECT sensors. The DNN-LNG imaging network can greatly eliminate artifacts and distortions, and obtain clear and accurate imaging results. The combination of flexible sensors and DNN-LNG imaging method has broad application prospects in LNG two-phase flow imaging.

Key words: electrical capacitance tomography    flexible printed circuit    neural network    cryogenics    liquified natural gas (LNG)
收稿日期: 2024-04-25 出版日期: 2025-05-30
CLC:  TP 393  
基金资助: 浙江省自然科学基金资助项目(LBMHY25A020002);国家重点研发计划资助项目(2022YFB4002900).
通讯作者: 张小斌     E-mail: tian_zenan@zju.edu.cn;zhangxbin@zju.edu.cn
作者简介: 田泽南(1997—),男,博士生,从事低温电容层析成像技术研究. orcid.org/0009-0003-0789-3649. E-mail:tian_zenan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
田泽南
高鑫鑫
张小斌

引用本文:

田泽南,高鑫鑫,张小斌. 基于柔性传感器的管内LNG电容层析深度神经网络成像[J]. 浙江大学学报(工学版), 2025, 59(6): 1303-1310.

Zenan TIAN,Xinxin GAO,Xiaobin ZHANG. Electrical capacitance tomography imaging of LNG inside pipes using deep neural networks based on flexible sensor. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1303-1310.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.021        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1303

图 1  基于柔性传感器的图像重建系统
图 2  2种ECT传感器方案
图 3  液氮浸泡后复温的贴片方案传感器
图 4  ECT管道横截面计算域
图 5  DNN-LNG的结构
流体对相对介电常数
水/空气 (300 K)77.747/1.0005
聚丙烯颗粒/空气(300 K)1.6201/1.0005
液氮/饱和氮蒸汽(78 K)1.4337/1.0021
液氧/饱和氧蒸汽(90 K)1.4877/1.0016
LNG/饱和甲烷蒸汽(112 K)1.6299/1.0020
表 1  不同流体对的相对介电常数[21]
图 6  DNN-LNG的训练样本
图 7  柔性传感器与贴片传感器的测量结果对比
图 8  数值实验中各流型成像结果
流型算法IE/%CC
环状流LBP46.390.85
Landweber39.290.88
DNN-LNG19.400.97
层流LBP30.180.91
Landweber25.170.93
DNN-LNG11.820.98
柱状流LBP89.890.47
Landweber81.450.59
DNN-LNG25.010.97
表 2  数值实验中各流型反演图像的图像误差及相关系数
图 9  贴片传感器测量的各流型成像结果
图 10  柔性传感器测量的各流型成像结果
流型算法IE/%CC
环状流LBP54.760.74
Landweber39.250.85
DNN-LNG12.710.97
层流LBP29.340.89
Landweber26.840.90
DNN-LNG17.630.96
柱状流LBP54.140.82
Landweber41.380.85
DNN-LNG20.550.98
表 3  贴片传感器各流型反演图像的图像误差及相关系数
流型算法IE/%CC
环状流LBP40.500.78
Landweber32.910.82
DNN-LNG17.490.97
层流LBP29.620.93
Landweber23.550.95
DNN-LNG15.050.98
柱状流LBP45.010.79
Landweber37.050.87
DNN-LNG14.890.97
表 4  柔性传感器各流型反演图像的图像误差及相关系数
图 11  柔性传感器测量的LN2-VN2两相流图像
1 YANG Z Q, CHEN G F, ZHUANG X R, et al A new flow pattern map for flow boiling of R1234ze(E) in a horizontal tube[J]. International Journal of Multiphase Flow, 2018, 98: 24- 35
doi: 10.1016/j.ijmultiphaseflow.2017.08.015
2 FORTE G, CLARK P J, YAN Z, et al Using a Freeman FT4 rheometer and Electrical Capacitance Tomography to assess powder blending[J]. Powder Technology, 2018, 337: 25- 35
doi: 10.1016/j.powtec.2017.12.020
3 CHEN J, WANG Y, ZHANG W, et al Capacitance-based liquid holdup measurement of cryogenic two-phase flow in a nearly-horizontal tube[J]. Cryogenics, 2017, 84: 69- 75
doi: 10.1016/j.cryogenics.2017.04.006
4 KHALIL A, MCINTOSH G, BOOM R W Experimental measurement of void fraction in cryogenic two phase upward flow[J]. Cryogenics, 1981, 21 (7): 411- 414
doi: 10.1016/0011-2275(81)90174-0
5 FILIPPOV Y P, KOVRIZHNYKH A M, MIKLAYEV V M, et al Metrological systems for monitoring two-phase cryogenic flows[J]. Cryogenics, 2000, 40 (4/5): 279- 285
6 HARADA K, MURAKAMI M, ISHII T PIV measurements for flow pattern and void fraction in cavitating flows of He II and He I[J]. Cryogenics, 2006, 46 (9): 648- 657
doi: 10.1016/j.cryogenics.2006.03.002
7 戴俊 电容法在多相流参数测量领域的应用开发[J]. 船舶工程, 2015, 37 (12): 47- 51
DAI Jun Application development of the capacitance method to measure the multiphase flow parameter[J]. Ship Engineering, 2015, 37 (12): 47- 51
8 CHE H Q, YE J M, TU Q Y, et al Investigation of coating process in Wurster fluidised bed using electrical capacitance tomography[J]. Chemical Engineering Research and Design, 2018, 132: 1180- 1192
doi: 10.1016/j.cherd.2018.02.015
9 MOHAMAD E J, RAHIM R A, RAHIMAN M H F, et al Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor[J]. Flow Measurement and Instrumentation, 2016, 47: 62- 70
doi: 10.1016/j.flowmeasinst.2015.12.004
10 DO NASCIMENTO WRASSE A, DOS SANTOS E N, DA SILVA M J, et al Capacitive sensors for multiphase flow measurement: a review[J]. IEEE Sensors Journal, 2022, 22 (22): 21391- 21409
doi: 10.1109/JSEN.2022.3210467
11 马敏, 王涛 基于CNN-MSLSTM的航空发动机滑油监测方法研究[J]. 计量学报, 2021, 42 (2): 232- 238
MA Min, WANG Tao Research on monitoring method of aeroengine lubricating oil based on CNN-MSLSTM[J]. Acta Metrologica Sinica, 2021, 42 (2): 232- 238
12 XIE C G, HUANG S M, BECK M S, et al Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors[J]. IEE Proceedings G Circuits, Devices and Systems, 1992, 139 (1): 89
doi: 10.1049/ip-g-2.1992.0015
13 YANG W Q, SPINK D M, YORK T A, et al An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10 (11): 1065- 1069
doi: 10.1088/0957-0233/10/11/315
14 MARASHDEH Q, WARSITO W, FAN L S, et al A nonlinear image reconstruction technique for ECT using a combined neural network approach[J]. Measurement Science and Technology, 2006, 17 (8): 2097- 2103
doi: 10.1088/0957-0233/17/8/007
15 ZHAO J, FU W, LI T, et al Image reconstruction new algorithm for electrical capacitance tomography[J]. Computer Engineering, 2004, 30 (8): 54- 56,82
16 LIU X, WANG X, HU H, et al An extreme learning machine combined with Landweber iteration algorithm for the inverse problem of electrical capacitance tomography[J]. Flow Measurement and Instrumentation, 2015, 45: 348- 356
doi: 10.1016/j.flowmeasinst.2015.07.009
17 DEABES W, KHAYYAT K M J Image reconstruction in electrical capacitance tomography based on deep neural networks[J]. IEEE Sensors Journal, 2021, 21 (22): 25818- 25830
doi: 10.1109/JSEN.2021.3116164
18 JOHANSEN R. Machine learning algorithms in multiphase flow regime identification using electrical capacitance tomography [D]. Kongsberg: University of South-Eastern Norway, 2018.
19 ZHENG J, MA H, PENG L. A CNN-based image reconstruction for electrical capacitance tomography [C]// IEEE International Conference on Imaging Systems and Techniques. Abu Dhabi: IEEE, 2019: 1–6.
20 王子辰, 陈晓艳, 王倩, 等 基于残差自注意力连接的深度电学层析成像方法[J]. 仪器仪表学报, 2023, 44 (5): 288- 300
WANG Zichen, CHEN Xiaoyan, WANG Qian, et al Electrical tomography imaging method based on deep CNN with residual self-attention skip connection[J]. Chinese Journal of Scientific Instrument, 2023, 44 (5): 288- 300
21 XIE H, CHEN H, GAO X, et al Theoretical analysis of fuzzy least squares support vector regression method for void fraction measurement of two-phase flow by multi-electrode capacitance sensor[J]. Cryogenics, 2019, 103: 102969
doi: 10.1016/j.cryogenics.2019.07.008
22 XIA T, XIE H, WEI A, et al Preliminary study on three-dimensional imaging of cryogenic two-phase flow based on electrical capacitance volume tomography[J]. Cryogenics, 2020, 110: 103127
doi: 10.1016/j.cryogenics.2020.103127
23 TIAN Z N, GAO X X, QIU L M, et al Experimental imaging and algorithm optimization based on deep neural network for electrical capacitance tomography for LN2-VN2 flow[J]. Cryogenics, 2022, 127: 103568
doi: 10.1016/j.cryogenics.2022.103568
[1] 杨燕,晁丽鹏. 基于多维协同注意力的双支特征联合去雾网络[J]. 浙江大学学报(工学版), 2025, 59(6): 1119-1129.
[2] 王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
[3] 王爽,孙守锁,郭永存,胡泽永. 电磁混合式耦合器调隙装置多目标参数优化[J]. 浙江大学学报(工学版), 2025, 59(5): 1007-1017.
[4] 张梦瑶,周杰,李文婷,赵勇. 结合全局信息和局部信息的三维网格分割框架[J]. 浙江大学学报(工学版), 2025, 59(5): 912-919.
[5] 钱新宇,谢清林,陶功权,温泽峰. 基于多结构数据驱动的车轮扁疤定量识别方法[J]. 浙江大学学报(工学版), 2025, 59(4): 688-697.
[6] 袁沛,蒋君侠,马飞,金杰峰,来建良. 基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测[J]. 浙江大学学报(工学版), 2025, 59(3): 606-615.
[7] 刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.
[8] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[9] 吴菲,陈嘉诚,王万良. 基于并行计算的计算智能综述[J]. 浙江大学学报(工学版), 2025, 59(1): 27-38.
[10] 赖凌轩,柳景青,周一粟,李秀娟. 基于时频卷积神经网络的供水管道漏损识别[J]. 浙江大学学报(工学版), 2025, 59(1): 196-204.
[11] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[12] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[13] 徐满,张冬梅,余想,李江,吴益平. 基于多重分形的改进GRU滑坡位移预测模型[J]. 浙江大学学报(工学版), 2024, 58(7): 1407-1416.
[14] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[15] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.