能源与动力工程 |
|
|
|
|
基于柔性传感器的管内LNG电容层析深度神经网络成像 |
田泽南( ),高鑫鑫,张小斌*( ) |
浙江大学 制冷与低温研究所,浙江 杭州 310027 |
|
Electrical capacitance tomography imaging of LNG inside pipes using deep neural networks based on flexible sensor |
Zenan TIAN( ),Xinxin GAO,Xiaobin ZHANG*( ) |
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China |
1 |
YANG Z Q, CHEN G F, ZHUANG X R, et al A new flow pattern map for flow boiling of R1234ze(E) in a horizontal tube[J]. International Journal of Multiphase Flow, 2018, 98: 24- 35
doi: 10.1016/j.ijmultiphaseflow.2017.08.015
|
2 |
FORTE G, CLARK P J, YAN Z, et al Using a Freeman FT4 rheometer and Electrical Capacitance Tomography to assess powder blending[J]. Powder Technology, 2018, 337: 25- 35
doi: 10.1016/j.powtec.2017.12.020
|
3 |
CHEN J, WANG Y, ZHANG W, et al Capacitance-based liquid holdup measurement of cryogenic two-phase flow in a nearly-horizontal tube[J]. Cryogenics, 2017, 84: 69- 75
doi: 10.1016/j.cryogenics.2017.04.006
|
4 |
KHALIL A, MCINTOSH G, BOOM R W Experimental measurement of void fraction in cryogenic two phase upward flow[J]. Cryogenics, 1981, 21 (7): 411- 414
doi: 10.1016/0011-2275(81)90174-0
|
5 |
FILIPPOV Y P, KOVRIZHNYKH A M, MIKLAYEV V M, et al Metrological systems for monitoring two-phase cryogenic flows[J]. Cryogenics, 2000, 40 (4/5): 279- 285
|
6 |
HARADA K, MURAKAMI M, ISHII T PIV measurements for flow pattern and void fraction in cavitating flows of He II and He I[J]. Cryogenics, 2006, 46 (9): 648- 657
doi: 10.1016/j.cryogenics.2006.03.002
|
7 |
戴俊 电容法在多相流参数测量领域的应用开发[J]. 船舶工程, 2015, 37 (12): 47- 51 DAI Jun Application development of the capacitance method to measure the multiphase flow parameter[J]. Ship Engineering, 2015, 37 (12): 47- 51
|
8 |
CHE H Q, YE J M, TU Q Y, et al Investigation of coating process in Wurster fluidised bed using electrical capacitance tomography[J]. Chemical Engineering Research and Design, 2018, 132: 1180- 1192
doi: 10.1016/j.cherd.2018.02.015
|
9 |
MOHAMAD E J, RAHIM R A, RAHIMAN M H F, et al Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor[J]. Flow Measurement and Instrumentation, 2016, 47: 62- 70
doi: 10.1016/j.flowmeasinst.2015.12.004
|
10 |
DO NASCIMENTO WRASSE A, DOS SANTOS E N, DA SILVA M J, et al Capacitive sensors for multiphase flow measurement: a review[J]. IEEE Sensors Journal, 2022, 22 (22): 21391- 21409
doi: 10.1109/JSEN.2022.3210467
|
11 |
马敏, 王涛 基于CNN-MSLSTM的航空发动机滑油监测方法研究[J]. 计量学报, 2021, 42 (2): 232- 238 MA Min, WANG Tao Research on monitoring method of aeroengine lubricating oil based on CNN-MSLSTM[J]. Acta Metrologica Sinica, 2021, 42 (2): 232- 238
|
12 |
XIE C G, HUANG S M, BECK M S, et al Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors[J]. IEE Proceedings G Circuits, Devices and Systems, 1992, 139 (1): 89
doi: 10.1049/ip-g-2.1992.0015
|
13 |
YANG W Q, SPINK D M, YORK T A, et al An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10 (11): 1065- 1069
doi: 10.1088/0957-0233/10/11/315
|
14 |
MARASHDEH Q, WARSITO W, FAN L S, et al A nonlinear image reconstruction technique for ECT using a combined neural network approach[J]. Measurement Science and Technology, 2006, 17 (8): 2097- 2103
doi: 10.1088/0957-0233/17/8/007
|
15 |
ZHAO J, FU W, LI T, et al Image reconstruction new algorithm for electrical capacitance tomography[J]. Computer Engineering, 2004, 30 (8): 54- 56,82
|
16 |
LIU X, WANG X, HU H, et al An extreme learning machine combined with Landweber iteration algorithm for the inverse problem of electrical capacitance tomography[J]. Flow Measurement and Instrumentation, 2015, 45: 348- 356
doi: 10.1016/j.flowmeasinst.2015.07.009
|
17 |
DEABES W, KHAYYAT K M J Image reconstruction in electrical capacitance tomography based on deep neural networks[J]. IEEE Sensors Journal, 2021, 21 (22): 25818- 25830
doi: 10.1109/JSEN.2021.3116164
|
18 |
JOHANSEN R. Machine learning algorithms in multiphase flow regime identification using electrical capacitance tomography [D]. Kongsberg: University of South-Eastern Norway, 2018.
|
19 |
ZHENG J, MA H, PENG L. A CNN-based image reconstruction for electrical capacitance tomography [C]// IEEE International Conference on Imaging Systems and Techniques. Abu Dhabi: IEEE, 2019: 1–6.
|
20 |
王子辰, 陈晓艳, 王倩, 等 基于残差自注意力连接的深度电学层析成像方法[J]. 仪器仪表学报, 2023, 44 (5): 288- 300 WANG Zichen, CHEN Xiaoyan, WANG Qian, et al Electrical tomography imaging method based on deep CNN with residual self-attention skip connection[J]. Chinese Journal of Scientific Instrument, 2023, 44 (5): 288- 300
|
21 |
XIE H, CHEN H, GAO X, et al Theoretical analysis of fuzzy least squares support vector regression method for void fraction measurement of two-phase flow by multi-electrode capacitance sensor[J]. Cryogenics, 2019, 103: 102969
doi: 10.1016/j.cryogenics.2019.07.008
|
22 |
XIA T, XIE H, WEI A, et al Preliminary study on three-dimensional imaging of cryogenic two-phase flow based on electrical capacitance volume tomography[J]. Cryogenics, 2020, 110: 103127
doi: 10.1016/j.cryogenics.2020.103127
|
23 |
TIAN Z N, GAO X X, QIU L M, et al Experimental imaging and algorithm optimization based on deep neural network for electrical capacitance tomography for LN2-VN2 flow[J]. Cryogenics, 2022, 127: 103568
doi: 10.1016/j.cryogenics.2022.103568
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|