Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1604-1617    DOI: 10.3785/j.issn.1008-973X.2024.08.008
机械工程、能源工程     
基于递归量化分析的CFRP超声检测缺陷识别方法
王海军1(),王涛2,俞慈君2,*()
1. 浙江大学 工程师学院,浙江 杭州 310058
2. 浙江大学 机械工程学院,浙江 杭州 310058
CFRP ultrasonic detection defect identification method based on recursive quantitative analysis
Haijun WANG1(),Tao WANG2,Cijun YU2,*()
1. College of Engineering, Zhejiang University, Hangzhou 310058, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3095 KB)   HTML
摘要:

为了解决碳纤维增强复合材料 (CFRP)超声检测缺陷识别不准确、不可靠的问题,提出自适应变分模态分解(AVMD)与递归量化分析技术(RQAT)特征提取和卷积神经网络(CNN)识别方法. 实验预埋6种模拟缺陷,使用超声相控阵检测后,每种缺陷取500个A扫描波形信号数据,利用蝠鲼智能优化算法优化出变分模态分解(VMD)所需的K、Alpha,使用优化参数的VMD得到本征模态函数(IMF)分量,筛选高频噪声部分,对剩余IMF分量使用递归量化分析技术. 每个信号得到72个特征值,将特征值组成特征向量,输入CNN进行识别,训练集识别正确率为99.94%,验证集识别正确率为98.09%,测试集识别正确率为98.27%. 结果表明,AVMD与RQAT、CNN的结合解决了CFRP超声检测中缺陷的识别分类问题.

关键词: 碳纤维复合材料(CFRP)无损检测变分模态分解递归量化分析特征提取卷积神经网络缺陷识别    
Abstract:

An adaptive variational mode decomposition (AVMD) and recursive quantitative analysis technique (RQAT) for feature extraction was proposed combined with convolutional neural network (CNN) for recognition in order to address the issues of inaccuracy and unreliability in ultrasonic defect detection of carbon fiber reinforced plastics (CFRP). Six types of simulated defects were embedded in the experiments, and 500 A-scan waveform signals were collected for each defect type after ultrasonic phased array detection. The stingray intelligent optimization algorithm was used to optimize the K and Alpha values required for variational mode decomposition (VMD). Intrinsic mode function (IMF) components were obtained by using these optimized parameters, and high-frequency noise parts were filtered out. The remaining IMF components were processed with recursive quantitative analysis technique. Each signal yielded 72 feature values, which were assembled into feature vectors and input into the CNN for recognition. The recognition accuracy was 99.94% for the training set, 98.09% for the validation set, and 98.27% for the test set. Results show that the combination of AVMD, RQAT and CNN solves the defect recognition and classification problem in CFRP ultrasonic testing.

Key words: carbon fiber reinforced plastics (CFRP)    non-destructive testing    variational mode decomposition    recursive quantitative analysis    feature extraction    convolutional neural network    defect identification
收稿日期: 2023-07-05 出版日期: 2024-07-23
CLC:  TP 274  
基金资助: 自然科学基金重点资助项目(91748204);国家自然科学基金创新研究群体科学基金资助项目(51821093);浙江省重点研发计划资助项目(2020C01039).
通讯作者: 俞慈君     E-mail: navywang@zju.edu.cn;yuppy@zju.edu.cn
作者简介: 王海军(1998—),男,硕士生,从事超声无损检测的研究. orcid.org/0009-0008-5410-6085. E-mail:navywang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王海军
王涛
俞慈君

引用本文:

王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.

Haijun WANG,Tao WANG,Cijun YU. CFRP ultrasonic detection defect identification method based on recursive quantitative analysis. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1604-1617.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.008        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1604

图 1  超声信号反射透射的示意图
材料密度/(kg·m?3)弹性模量/GPa声速/(m·s?1)声阻抗/(Pa·s·m?1)反射率相位情况
CFRP1.5×10389.4530704.61×1060
环氧树脂1.48×103329724.4×106?0.0228相位相反
PE膜1.24×1030.924603.05×106?0.203相位相反
聚四氟乙烯(PTFE)2.1×1030.2814002.94×106?0.221相位相反
衬纸1×103215001.5×106?0.509相位相反
8.96×10311746604.18×1070.801相位相同
2.7×1037063201.71×1070.575相位相同
表 1  6种缺陷材料性能的对比表
图 2  缺陷样板图
图 3  超声相控阵检测系统
图 4  6种不同缺陷信号的传统分析图
图 5  EMD与VMD分解叠加信号效果的对比图
图 6  蝠鲼智能优化算法的执行流程图
图 7  自适应VMD执行流程图
图 8  2种算法参数优化的统计对比图
方法参数均值标准差众数中位数极差
SSAK3.42.7128
MRFO7.72.0996
SSAAlpha1936.4625.316501936.81998.7
MRFO2048.6521.929502065.71999.4
表 2  2种算法的优化结果对比表
图 9  分层缺陷自适应VMD分解图
图 10  分层缺陷各IMF分量递归图
类型RRDERENTRRATIOLAMTTLmaxHmaxL
10.030.811.3334.120.612.37243.273.1045.59
20.110.932.0211.920.928.29258.0543.3646.41
30.080.901.9117.500.887.43233.0640.3646.26
40.020.731.2748.630.542.45195.462.9547.93
50.040.871.6926.730.813.05235.225.5955.15
60.050.901.8719.270.884.16253.2915.2244.34
表 3  2885数据IMF3分量递归量化分析参数平均值的汇总表
图 11  CNN模型的结构图
输入层卷积层卷积层卷积层池化层全连接层全连接层输出层
8×9×13×3,162×2,23×3,322×2,264 神经元6 神经元6 层
表 4  CNN神经网络训练模型的参数
图 12  小波包转换与BP识别结果
图 13  RQAT与BP神经网络方法的识别效果图
图 14  新方法的识别结果
1 MOHAMMADKHANI R, FRAGONARA L Z, PADIYAR J M, et al. Ultrasonic phased array imaging technology for the inspection of aerospace composite structures [C]// IEEE 6th International Workshop on Metrology for Aerospace. New York: IEEE, 2019: 203-208.
2 LEE J C, PARK D H, JUNG H S, et al Design for carbon fiber lamination of PMI foam cored CFRP sandwich composite applied to automotive rear spoiler[J]. Fibers and Polymers, 2020, 21 (1): 156- 161
doi: 10.1007/s12221-020-9489-4
3 CHENG X Y, MA G S, WU Z Y, et al Automatic defect depth estimation for ultrasonic testing in carbon fiber reinforced composites using deep learning[J]. NDT and E International, 2023, 135 (2): 102804
4 WRONKOWICZ A, DRAGAN K, LIS K. Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures [J]. Composite Structures , 2018, 203(11): 71-84.
5 QU Z, JIANG P, ZHANG W Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20 (14): 3851
doi: 10.3390/s20143851
6 SHOUKROUN D, MASSIMI L, IACOVIELLO F, et al Enhanced composite plate impact damage detection and characterization using X-Ray refraction and scattering contrast combined with ultrasonic imaging[J]. Composites Part B: Engineering, 2020, 181 (7): 107579
7 MAREC A, THOMAS J H, GUERJOUMA R Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data[J]. Mechanical Systems and Signal Processing, 2008, 22 (6): 1441- 1464
doi: 10.1016/j.ymssp.2007.11.029
8 胡业发, 孟由, 张锦光, 等 含夹杂缺陷碳纤维复合材料层压板的无损检测与评估研究[J]. 复合材料科学与工程, 2023, 31 (2): 94- 100
HU Yefa, MENG You, ZHANG Jinguang, et al Nondestructive testing and evaluation of carbon fiber reinforced polymer laminates with inclusions[J]. Composites Science and Engineering, 2023, 31 (2): 94- 100
9 LIANG H, CHENG G, ZHANG Z, et al Research on ultrasonic defect identification method of well control manifold pipeline based on IAFSA-SVM[J]. Measurement, 2022, 194 (15): 110854
10 LEE K, ESTIVILL-CASTRO V Feature extraction and gating techniques for ultrasonic shaft signal classification[J]. Applied Soft Computing, 2007, 7 (1): 156- 165
doi: 10.1016/j.asoc.2005.05.003
11 GE M, WANG J, XU Y, et al Rolling bearing fault diagnosis based on EWT sub-modal hypothesis test and ambiguity correlation classification[J]. Symmetry, 2018, 10 (12): 730
doi: 10.3390/sym10120730
12 李健, 郭薇, 杨晓霞, 等 超声相控阵检测CFRP缺陷识别方法[J]. 天津大学学报: 自然科学与工程技术版, 2015, 48 (8): 750- 756
LI Jian, GUO Wei, YANG Xiaoxia, et al Ultrasonic phased array detection CFRP defect identification method[J]. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2015, 48 (8): 750- 756
13 ZHANG Y, YUEN K V, MOUSAVI M, et al Timber damage identification using dynamic broad network and ultrasonic signals[J]. Engineering Structures, 2022, 263 (17): 114418
14 CHEN H, LIU H, WANG X, et al Research on feature extraction and classification of ultrasonic flaw[J]. International Journal of Circuits, Systems and Signal Processing, 2015, 9 (5): 362- 372
15 邓勇, 黄远伟, 赖治屹 钢板缺陷识别的Volterra-SVM模型研究[J]. 机械科学与技术, 2023, 42 (1): 132- 138
DENG Yong, HUANG Yuanwei, LAI Zhiyi Study on Volterra-SVM model for defect recognition of steel plate[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (1): 132- 138
16 胡宏伟, 张婕, 彭刚, 等 基于LBP-KPCA特征提取的焊缝超声检测缺陷分类方法[J]. 焊接学报, 2019, 40 (6): 34- 39
HU Hongwei, ZHANG Jie, PENG Gang, et al A defect classification method for ultrasonic testing of welds based on LBP-KPCA feature extraction[J]. Transactions of the China Welding Institution, 2019, 40 (6): 34- 39
17 RAO K S, BEATRICEVEENA T V, ANGANI C S, et al. Novel time-domain parameters for detection and classification of flaws using pulsed eddy current technique [J]. Journal of Magnetics , 2020, 25(3): 434-439.
18 YANG P, YANG Q Empirical mode decomposition and rough set attribute reduction for ultrasonic flaw signal classification[J]. International Journal of Computational Intelligence Systems, 2014, 7 (3): 481
doi: 10.1080/18756891.2014.889877
19 MOUSAVI M, TASKHIRI M S, HOLLOWAY D, et al Feature extraction of wood-hole defects using empirical mode decomposition of ultrasonic signals[J]. NDT and E International, 2020, 114 (21): 102282
20 HASSANI S, MOUSAVI M, GANDOMI A H Damage detection of composite laminate structures using VMD of FRF contaminated by high percentage of noise[J]. Composite Structures, 2022, 286 (35): 115243
21 DRAGOMIRETSKIY K, ZZOSSO D Variational mode decomposition[J]. Signal Process, 2014, 62 (9): 531- 544
22 赵雨. 基于AVMD和RF的GIS局部放电模式识别方法研究[D]. 长沙: 湖南大学, 2021: 001419.
ZHAO Yu. Research on GIS partial discharge pattern recognition method based on AVMD and RF [D]. Changsha: Hunan University, 2021: 001419.
23 褚惟, 王贵勇, 刘韬, 等 麻雀算法参数优化VMD联合K-SVD滚动轴承故障诊断[J]. 噪声与振动控制, 2022, 42 (4): 100- 106
CHU Wei, WANG Guiyong, LIU Tao, et al Fault diagnosis of VMD combined with K-SVD rolling bearing for parameter optimization of sparrow algorithm[J]. Noise and Vibration Control, 2022, 42 (4): 100- 106
24 ECKMANN J P, KAMPHORST S O, RUELLE D Recurrence plots of dynamical systems[J]. Europhysics Letter, 1987, 4 (13): 973- 977
25 WEBBER C L, ZBILUT J P Dynamical assessment of physiological systems and states using recurrence plot strategies[J]. Journal of Applied Physiology, 1994, 76 (2): 965
doi: 10.1152/jappl.1994.76.2.965
[1] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[2] 徐满,张冬梅,余想,李江,吴益平. 基于多重分形的改进GRU滑坡位移预测模型[J]. 浙江大学学报(工学版), 2024, 58(7): 1407-1416.
[3] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[4] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[5] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[6] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[7] 宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
[8] 王殿海,谢瑞,蔡正义. 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1607-1617.
[9] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[10] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[11] 吕鑫栋,李娇,邓真楠,冯浩,崔欣桐,邓红霞. 基于改进Transformer的结构化图像超分辨网络[J]. 浙江大学学报(工学版), 2023, 57(5): 865-874.
[12] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.
[13] 周传华,操礼春,周家亿,詹凤. 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报(工学版), 2023, 57(5): 930-938.
[14] 刘坤,杨晓松. 基于无监督域适应的跨场景带钢表面缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(3): 477-485.
[15] 顾桂梅,贾耀华,赵岩浩,张文辉,闫炳旭. 基于组合零样本学习的接触网吊弦线缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(11): 2285-2293.