计算机与控制工程 |
|
|
|
|
基于无监督域适应的跨场景带钢表面缺陷识别 |
刘坤( ),杨晓松 |
河北工业大学 人工智能与数据科学学院,天津 300131 |
|
Surface defect identification of cross scene strip based on unsupervised domain adaptation |
Kun LIU( ),Xiao-song YANG |
College of Artificial Intelligence, Hebei University of Technology, Tianjin 300131, China |
1 |
HU L, DUAN F, DING K, et al Research on surface detects on line detection system for steel plate using computer vision[J]. Iron and Steel, 2005, 40 (2): 59- 61
|
2 |
WANG J, LI Q, GAN J, et al Surface defect detection via entity sparsity pursuit with intrinsic priors[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (1): 141- 150
doi: 10.1109/TII.2019.2917522
|
3 |
SAMSUDIAN S S, AROF H, HARUN S W, et al Steel surface defect classification using multi-resolution empirical mode decomposition and LBP[J]. Measurement Science and Technology, 2020, 32 (1): 015601
|
4 |
MENTOURI Z, MOUSSAOUI A, BOUDJEHEM D, et al Steel strip surface defect identification using multiresolution binarized image features[J]. Journal of Failure Analysis and Prevention, 2020, 20: 1917- 1927
doi: 10.1007/s11668-020-01012-7
|
5 |
ZAGHDOUDI R, SERIDI H, BOUDIAF A, et al. Binary Gabor pattern (BGP) descriptor and principal component analysis (PCA) for steel surface defects classification [C]// 2020 International Conference on Advanced Aspects of Software Engineering.Constantine: IEEE, 2020: 1–7.
|
6 |
KNITTER-PIĄTKOWSKA A, DOBRZYCKI A Application of wavelet transform to damage identification in the steel structure elements[J]. Applied Sciences, 2020, 10 (22): 8198
|
7 |
MENTOURI Z, DOGHMANE H, GHERFI K, et al. Tool combination for the description of steel surface image and defect classification [C]// The 2nd International Conference on Embedded Systems and Artificial Intelligence. Fez:[s.n.], 2021: 1-13.
|
8 |
SARDA K, ACERNESE A, NOLÈ V, et al A multi-step anomaly detection strategy based on robust distances for the steel industry[J]. IEEE Access, 2021, 9: 53827
doi: 10.1109/ACCESS.2021.3070659
|
9 |
TSAI D M, CHEN M C, LI W C, et al A fast regularity measure for surface defect detection[J]. Machine Vision and Applications, 2012, 23: 869- 886
doi: 10.1007/s00138-011-0403-3
|
10 |
BOUDANI F Z, NACEREDDINE N, LAICHE N. Content-based image retrieval for surface defects of hot rolled steel strip using wavelet-based LBP [C]// International Workshop on Artificial Intelligence and Pattern Recognition. [S.l.]: Springer, 2021: 404–413.
|
11 |
徐科, 宋敏, 杨朝霖, 等 隐马尔可夫树模型在带钢表面缺陷在线检测中的应用[J]. 机械工程学报, 2013, 49 (22): 34- 40 XU Ke, SONG Min, YANG Chao-lin, et al Application of hidden Markov tree model to on-line detection of surface defects for steel strips[J]. Journal of Mechanical Engineering, 2013, 49 (22): 34- 40
doi: 10.3901/JME.2013.22.034
|
12 |
TAO X, ZHANG D, MA W, et al Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences, 2018, 8 (9): 1575
|
13 |
HE Y, SONG K, MENG Q, et al An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (4): 1493- 1504
|
14 |
DONG H, SONG K, HE Y, et al PGA-net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (12): 7448- 7458
|
15 |
CHEN F C, JAHANSHAHI M R NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (5): 4392- 4400
doi: 10.1109/TIE.2017.2764844
|
16 |
彭大芹, 刘恒, 许国良, 等 基于双向特征融合卷积神经网络的液晶面板缺陷检测算法[J]. 广东通信技术, 2019, 39 (4): 66- 73 PENG Da-qin, LIU Heng, XU Guo-liang, et al Defect detection algorithm of liquid crystal panel based on bidirectional feature fusion convolution neural network[J]. Guangdong Communication Technology, 2019, 39 (4): 66- 73
|
17 |
ZHANG Y, QIU Z, YAO T, et al. Fully convolutional adaptation networks for semantic segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6810–6818.
|
18 |
LIU D, ZHANG D, SONG Y, et al. Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4242–4251.
|
19 |
ZHENG Y, HUANG D, LIU S, et al. Cross-domain object detection through coarse-to-fine feature adaptation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13763–13772.
|
20 |
SINDAGI V A, SRIVASTAVA S Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description[J]. International Journal of Computer Vision, 2017, 122: 193- 211
doi: 10.1007/s11263-016-0953-y
|
21 |
GOETZ A, DURMAZ A R, MÜLLER M, et al Addressing materials’ microstructure diversity using transfer learning[J]. NPJ Computational Materials, 2022, 8: 27
doi: 10.1038/s41524-021-00695-2
|
22 |
FAN R, WANG H, BOCUS M J, et al. We learn better road pothole detection: from attention aggregation to adversarial domain adaptation [C]// European Conference on Computer Vision. [S.l.]: Springer, 2020: 285–300.
|
23 |
GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1777–1786.
|
24 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
25 |
LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]// Proceedings of the 32th International Conference on Machine Learning. Lille:[s.n.], 2015: 97-105.
|
26 |
LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks [C]// Proceedings of the 34th International Conference on Machine Learning. Sydney:[s.n.], 2017: 2208–2217.
|
27 |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation [C]// Proceedings of the 32nd International Conference on Machine Learning. Lille:[s.n.], 2015: 1180–1189.
|
28 |
RAAB C, VATH P, MEIER P, et al. Bridging adversarial and statistical domain transfer via spectral adaptation networks [C]// Proceedings of the Asian Conference on Computer Vision.[S.l.]: Spring, 2020: 457–473.
|
29 |
CUI S, WANG S, ZHUO J, et al. Gradually vanishing bridge for adversarial domain adaptation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12452–12461.
|
30 |
VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|