计算机技术 |
|
|
|
|
基于纹理修复的双焦相机连续数字变焦算法 |
宋炯辉1( ),李奇1,*( ),王静2,徐之海1,冯华君1,陈跃庭1 |
1. 浙江大学 光电科学与工程学院,浙江 杭州 310027 2. 光学辐射重点实验室,北京 100854 |
|
Continuous digital zooming algorithm of dual-focal camera based on texture restoration |
Jiong-hui SONG1( ),Qi LI1,*( ),Jing WANG2,Zhi-hai XU1,Hua-jun FENG1,Yue-ting CHEN1 |
1. College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China 2. Science and Technology on Optical Radiation Laboratory, Beijing 100854, China |
引用本文:
宋炯辉,李奇,王静,徐之海,冯华君,陈跃庭. 基于纹理修复的双焦相机连续数字变焦算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1510-1517.
Jiong-hui SONG,Qi LI,Jing WANG,Zhi-hai XU,Hua-jun FENG,Yue-ting CHEN. Continuous digital zooming algorithm of dual-focal camera based on texture restoration. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1510-1517.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.012
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1510
|
1 |
KEYS R Cubic convolution interpolation for digital image processing[J]. Speech and Signal Processing, 1981, 29 (6): 1153- 1160
doi: 10.1109/TASSP.1981.1163711
|
2 |
LI X New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10 (10): 1521- 1527
doi: 10.1109/83.951537
|
3 |
DONG C, LOY C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307
doi: 10.1109/TPAMI.2015.2439281
|
4 |
KIM J, LEE J, LEE K. Accurate image super-resolution using very deep convolutional networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 1646-1654.
|
5 |
LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 4681-4690.
|
6 |
YU S, MOON B, KIM D, et al Continuous digital zooming of asymmetric dual camera images using registration and variational image restoration[J]. Multidimensional Systems and Signal Processing, 2018, 29 (4): 1959- 1987
doi: 10.1007/s11045-017-0534-4
|
7 |
MOON B, YU S, KO S, et al Continuous digital zooming using local self-similarity-based superresolution for an asymmetric dual camera system[J]. Journal of the Optical Society of America A-optics Image Science and Vision, 2017, 34 (6): 991- 1003
doi: 10.1364/JOSAA.34.000991
|
8 |
MA H, LI Q, XU Z, et al Photo-realistic continuous digital zooming for an asymmetrical dual camera system[J]. Optics and Laser Technology, 2019, 109: 110- 122
doi: 10.1016/j.optlastec.2018.07.056
|
9 |
赫贵然, 李奇, 冯华君, 等 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1182- 1189 HE Gui-ran, LI Qi, FENG Hua-jun, et al Dual-focal camera continuous digital zoom based on CNN and feature extraction[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1182- 1189
|
10 |
ZHANG Z, WANG Z, LIN Z, et al. Image super-resolution by neural texture transfer[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Bench: IEEE, 2019: 7982-7991.
|
11 |
YANG F, YANG H, FU J, et al. Learning texture transformer network for image super-resolution[C]// 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5791-5800.
|
12 |
ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Bench: IEEE, 2019: 1486-1494.
|
13 |
YI Z, TANG Q, AZIZI S, et al. Contextual residual aggregation for ultra high-resolution image inpainting[C]// 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 7508-7517.
|
14 |
PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2536-2544.
|
15 |
SATOSHI I, EDGAR S, HIROSHI I Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36 (4): 107
|
16 |
YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 5505-5514.
|
17 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]// Thirty-first Conference on Neural Information Processing Systems. Long Bench: NIPS, 2017: 5767-5677.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|