Please wait a minute...
J4  2012, Vol. 46 Issue (2): 212-217    DOI: 10.3785/j.issn.1008-973X.2012.02.005
电气工程     
基于颜色纹理特征的均值漂移目标跟踪算法
戴渊明, 韦巍, 林亦宁
浙江大学 电气工程学院,浙江 杭州 310027
An improved Mean-shift tracking algorithm based on
color and texture feature
DAI Yuan-ming, WEI Wei, LIN Yi-ning
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对经典均值漂移跟踪算法采用单一的颜色特征对目标进行跟踪检测存在的不足,提出一种将纹理特征与颜色特征相结合的改进均值漂移目标跟踪算法.该算法首次提出特征联合相似度的概念,通过均值漂移算法联合相似度的最大化计算,正确快速地获取新一帧图像跟踪目标的位置.实验结果表明,该算法具有更高的可靠性,同时满足一般目标跟踪任务的实时性要求.

Abstract:

Aimed at the defect of classic Mean-shift tracking algorithm which is vulnerable to similar background inference for using single color feature, an improved color and texture features combined Mean-shift tracking algorithm is presented. Feature joint similarity was introduced for the first time. By maximizing the integrated similarity using Mean-shift algorithm the center of target in the new frame can be obtained accurately and rapidly. Experiments show that the proposed algorithm provides more reliable performance while satisfying the real-time requirements of general target tracking tasks.

出版日期: 2012-03-20
:  TP 391.41  
基金资助:

 国家“863”高技术研究发展计划资助项目 (2008AA042602);国家自然科学基金资助项目(60704030);中央高校基本科研业务费专项资金资助项目.

通讯作者: 韦巍,男,教授,博导.     E-mail: wwei@zju.edu.cn
作者简介: 戴渊明(1982—),男,博士生,从事机器视觉与智能控制方向科研工作.E-mail: daiym@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.

DAI Yuan-ming, WEI Wei, LIN Yi-ning. An improved Mean-shift tracking algorithm based on
color and texture feature. J4, 2012, 46(2): 212-217.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.02.005        http://www.zjujournals.com/eng/CN/Y2012/V46/I2/212

[1] DRUMMOND T, CIPOLLA R. Realtime visual tracking of complex structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 4(7): 932-946.
[2] COMANICIU D, RAMESH V, MEER P. Kernelbased object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
[3] LIU T L, CHEN H T. Realtime tracking using trustregion methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3): 397-402.
[4] COLLINS R T. Meanshift blob tracking through scale space [C]∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison Wisconsin: IEEE CS, 2003, 2: 234-240.
[5] ZIVKOVIC Z, KROSE B. An EMlike algorithm for colorhistogrambased object tracking [C]∥ Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washirgton D. C.: IEEE CS, 2004: 798-803.
[6] STERN H, EFROS B. Adaptive color space switching for face tracking in multicolor lighting environment [C]∥ Proceedings of IEEE Conference on Automatice Face and Gesture Recognition. Washirgton D. C.: IEEE CS,2002: 249-254.
[7] COLLINS R T, LIU Y. Online selection of discriminative tracking features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
[8] POLAT E, OZDEN. Anonparametric adaptive tracking algorithm based on multiple feature distributions [J]. IEEE Transactions on Multimedia, 2006, 8: 1156-1163.
[9] WANG J Q, YAGI Y. Integrating shape and color features for adaptive realtime object tracking [C]∥ Proceedings of IEEE Conference on Robotics and Biomimetics. Kunming: IEEE RAS, 2006: 1-6.
[10] TUCERYAN M, JAIN A K. Texture analysis, handbook pattern recognition and computer vision [M]. Singapore: World Scientific, 1993: 235-276.
[11] STOLLNITZ E J, DEROSE T D, SALESIN D H. Wavelets for computer graphics: A primer part 1 [J] IEEE Computer Graphics and Application, 1995, 15: 76-84.
[12] MANJUNATH B S, MA W Y. Texture features for browsing andretrieval of large imagedata [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
[13] KARASARIDIS A, SIMONCELLI E. A filter design technique for steerable pyramid image transforms [C]∥ Proceedings of International Conference on Acoustics Speech and Signal Processing. Atlanta, Georgia: IEEE SPS, 1996: 2387-2390.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[6] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[7] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[8] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[9] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[10] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[11] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[12] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.