Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1407-1416    DOI: 10.3785/j.issn.1008-973X.2024.07.010
交通工程、土木工程     
基于多重分形的改进GRU滑坡位移预测模型
徐满1(),张冬梅1,余想1,李江2,*(),吴益平3
1. 中国地质大学(武汉) 计算机学院,湖北 武汉 430074
2. 湖北省自然资源厅 信息中心,湖北 武汉 430071
3. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
Improved GRU landslide displacement prediction model based on multifractal
Man XU1(),Dongmei ZHANG1,Xiang YU1,Jiang LI2,*(),Yiping WU3
1. School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China
2. Information Center, Department of Natural Resources of Hubei Province, Wuhan 430071, China
3. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(2282 KB)   HTML
摘要:

门控机制设计难以学习序列变化趋势,导致传统记忆网络模型对滑坡位移非平稳跃变段预测效果较差. 基于多重分形改进门控循环单元(GRU),通过量化序列的变化特征来动态更新门控权重,引入循环神经网络单元的状态融合策略以学习数据的长程相关性特征. 采用变分模态分解算法将滑坡累积位移分解成趋势项、周期项及随机项,利用改进GRU进行位移分量的训练和预测. 选取三峡库区白水河滑坡监测点ZG93、ZG118进行仿真实验. 实验结果表明,相比传统预测模型,新模型的滑坡位移形变趋势特征学习能力更强,预测精度更高.

关键词: 滑坡累积位移多重分形门控循环单元(GRU)变分模态分解循环神经网络    
Abstract:

The traditional memory network model has poor prediction accuracy on a non-stationary mutation data segment due to the gate mechanism has difficulty in learning sequence change trends. A multifractal algorithm was introduced to improve the gating control of the gated recurrent unit (GRU), and dynamically update the gating weight by quantifying the change characteristics of the sequence. The state fusion of the recurrent neural network unit was introduced to learn the long-range correlation of data. The landslide cumulative displacement was decomposed into trend term, periodic term and random term through the variational mode decomposition algorithm. The decomposed terms were trained and predicted by using the improved GRU. The monitoring points ZG93 and ZG118 of the Baishuihe landslide in the Three Gorges Reservoir area were selected for simulation experiments. Experimental results show that compared with traditional models, the new model learns the characteristics of the landslide displacement deformation trend better and has a higher prediction accuracy.

Key words: landslide cumulative displacement    multifractal    gated recurrent unit (GRU)    variational mode decomposition    recurrent neural network
收稿日期: 2023-06-26 出版日期: 2024-07-01
CLC:  P 642  
基金资助: 国家自然科学基金联合基金重点支持项目(U1911205);湖北省自然资源厅科技项目(ZRZY2024KJ22).
通讯作者: 李江     E-mail: xuman@cug.edu.cn;johnlee1124@126.com
作者简介: 徐满(2001—),男,硕士生,从事时序预测研究. orcid.org/0009-0002-9741-8181. E-mail:xuman@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐满
张冬梅
余想
李江
吴益平

引用本文:

徐满,张冬梅,余想,李江,吴益平. 基于多重分形的改进GRU滑坡位移预测模型[J]. 浙江大学学报(工学版), 2024, 58(7): 1407-1416.

Man XU,Dongmei ZHANG,Xiang YU,Jiang LI,Yiping WU. Improved GRU landslide displacement prediction model based on multifractal. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1407-1416.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1407

图 1  门控循环单元的原理图
图 2  基于多重分形的改进门控循环单元结构图
图 3  循环神经网络状态融合
图 4  滑坡位移预测流程图
图 5  白水河滑坡地质概况图[4]
序列长度RMSE/mm序列长度RMSE/mm
60.0896140.1346
80.0844160.0852
100.0836180.0885
120.0809
表 1  不同输入窗口设置下预测结果的均方根误差
参数取值参数取值
VMD分量数k3迭代次数1200
批处理数量256学习率0.001
隐藏层节点数64隐藏层层数1
表 2  对比试验参数设置
图 6  不同监测点的累积位移-时间曲线图
图 7  监测点ZG118的累积位移-时间曲线、谱宽-时间曲线
图 8  监测点ZG118的滑坡位移分量-时间曲线
图 9  监测点ZG118的库水位-时间曲线、周期项-时间曲线
图 10  监测点ZG118周期项、随机项及对应谱宽随时间变化的曲线
图 11  不同模型滑坡位移分量的预测曲线
图 12  不同模型在突变数据段的周期项、随机项预测曲线
模型名称位移分量ZG93ZG118
$ {R}^{2} $RMSE/mmMAPE$ {R}^{2} $RMSE/mmMAPE
RNN趋势项0.992 796.287 050.002 7740.999 932.133 970.002 884
周期项0.999 980.129 220.011 5070.999 930.258 550.020 789
随机项0.999 940.083 460.011 1830.999 720.179 330.014 161
LSTM趋势项0.990 287.302 500.003 3170.988 838.230 300.003 849
周期项0.999 950.198 840.011 3590.999 760.478 830.040 156
随机项0.999 580.229 680.109 0910.998 180.460 150.155 724
GRU趋势项0.989 887.451 830.003 2460.991 477.192 230.003 231
周期项0.999 980.121 790.006 5910.999 530.667 300.057 643
随机项0.999 910.108 200.035 7210.999 840.134 400.016 579
MF-SF-GRU趋势项0.999 870.851 840.000 3460.999 781.142 170.000 433
周期项0.999 990.074 580.004 7570.999 990.061 810.008 133
随机项0.999 950.080 110.023 1860.999 950.075 120.009 470
表 3  不同模型的滑坡位移分量预测精度及误差
图 13  不同模型累积位移整体数据段预测曲线
图 14  不同模型累积位移突变数据段预测曲线
模型名称ZG93ZG118
R2RMSE/mmMAPER2RMSE/mmMAPE
RNN0.995 386.196 620.002 7230.995 786.211 990.002 776
LSTM0.993 527.335 840.003 3360.994 117.339 750.003 401
GRU0.993 367.427 080.003 2280.993 087.951 100.003 557
MF-SF-GRU0.999 910.856 160.000 3490.999 851.175 090.000 437
表 4  不同模型的累积位移预测精度及误差
模型名称ZG93ZG118
R2RMSE/mmMAPER2RMSE/mmMAPE
RNN0.772 095.797 980.002 6900.715 175.649 480.002 697
LSTM0.656 667.116 380.003 3160.570 336.938 820.003 401
GRU0.674 736.926 570.003 2060.526 957.280 730.003 334
MF-SF-GRU0.998 110.528 220.000 1920.994 880.757 120.000 314
表 5  不同模型部分突变数据段的累积位移预测精度及误差
1 叶润青, 付小林, 郭飞, 等 三峡水库运行期地质灾害变形特征及机制分析[J]. 工程地质学报, 2021, 29 (3): 680- 692
YE Runqing, FU Xiaolin, GUO Fei, et al Deformation characteristics and mechanism analysis of geological hazards during operation period of Three Gorges Reservoir[J]. Journal of Engineering Geology, 2021, 29 (3): 680- 692
2 李骅锦, 许强, 何雨森, 等 “阶跃式” 滑坡位移预测及阈值分析的 ARMA-(LASSO-ELM)-Copula模型[J]. 岩石力学与工程学报, 2017, 36 (Suppl.2): 4075- 4084
LI Huajin, XU Qiang, HE Yusen, et al An ARMA-(LASSO-ELM)-Copula farmework for landslide displacement prediction and threshold computing of the displacement of step-like landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (Suppl.2): 4075- 4084
3 许强, 汤明高, 徐开祥, 等 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27 (6): 1104- 1112
XU Qiang, TANG Minggao, XU Kaixiang, et al Research on space-timeevolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (6): 1104- 1112
doi: 10.3321/j.issn:1000-6915.2008.06.003
4 李麟玮, 吴益平, 苗发盛, 等 基于变分模态分解与 GWO-MIC-SVR 模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37 (6): 1395- 1406
LI Linwei, WU Yiping, MIAO Fasheng, et al Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (6): 1395- 1406
5 张俊, 殷坤龙, 王佳佳, 等 基于时间序列与 PSO-SVR 耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34 (2): 382- 391
ZHANG Jun, YIN Kunlong, WANG Jiajia, et al Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (2): 382- 391
6 XU S, NIU R Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers and Geosciences, 2018, 111: 87- 96
doi: 10.1016/j.cageo.2017.10.013
7 徐峰, 范春菊, 徐勋建, 等 基于变分模态分解和 AMPSO-SVM 耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52 (10): 1388- 1395
XU Feng, FAN Chunju, XU Jianxun, et al Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (10): 1388- 1395
8 陈伟, 雷帮军, 黄海峰 基于门控循环单元的滑坡位移预测和灾害预警方法[J]. 长江信息通信, 2021, 34 (5): 19- 21
CHEN Wei, LEI Bangjun, HUANG Haifeng Landslide displacement prediction and disaster early warning method based on gated recurrent unit[J]. Changjiang Information and Communication, 2021, 34 (5): 19- 21
doi: 10.3969/j.issn.1673-1131.2021.05.006
9 黄发明, 殷坤龙, 杨背背, 等 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测[J]. 地球科学, 2018, 43 (3): 887- 898
HUANG Faming, YIN Kunlong, YANG Beibei, et al Step-like displacement prediction of landslide based on time series decomposition and multivariate chaos model[J]. Earth Science, 2018, 43 (3): 887- 898
10 徐峰, 汪洋, 杜娟, 等 基于时间序列分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2011, 30 (4): 746- 751
XU Feng, WANG Yang, DU Juan, et al Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (4): 746- 751
11 朱治军, 李后强 小波分析在分形科学中的应用[J]. 应用基础与工程科学学报, 1994, 2 (4): 275- 281
ZHU Zhijun, LI Houqiang Application of wavelet analysis in fractals[J]. Journal of Applied Basic and Engineering Science, 1994, 2 (4): 275- 281
12 林大超, 安凤平, 郭章林, 等 滑坡位移的多模态支持向量机模型预测[J]. 岩土力学, 2011, 32 (Suppl.1): 451- 458
LIN Dachao, AN Fengping, GUO Zhanglin, et al Prediction of landslide displacements through multimode support vector machine model[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.1): 451- 458
13 邓冬梅. 基于集合经验模态分解的水库库岸滑坡阶跃型位移预测研究[D]. 武汉: 中国地质大学, 2018.
DENG Dongmei. Study of stepwise displacement prediction for reservoir landslides based on ensemble empirical mode decomposition [D]. Wuhan: China University of Geosciences, 2018.
14 李麟玮, 吴益平, 苗发盛, 等 考虑变形状态动态切换的阶跃型滑坡位移区间预测方法[J]. 岩石力学与工程学报, 2019, 38 (11): 2272- 2287
LI Linwei, WU Yiping, MIAO Fasheng, et al Displacement interval prediction method for step-like landslides considering deformation state dynamic switching[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (11): 2272- 2287
15 易利容, 王绍宇, 殷丽丽, 等 基于多变量 LSTM 的工业传感器时序数据预测[J]. 智能计算机与应用, 2018, 8 (5): 13- 16
YI Lirong, WANG Shaoyu, YIN Lili, et al Forecasting of industrial sensor time series based on multivariable LSTM[J]. Intelligent Computer and Applications, 2018, 8 (5): 13- 16
doi: 10.3969/j.issn.2095-2163.2018.05.003
16 HOCHREITER S. Untersuchungen zu dynamischen neuronalen Netzen [D]. Munich: Technical University of Munich, 1991. HOCHREITER S. Investigations on dynamic neural networks [D]. Munich: Technical University of Munich, 1991.
17 HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
18 CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]/ / Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724–1734.
19 管孝艳, 杨培岭, 吕烨 基于多重分形理论的农田土壤特性空间变异性分析[J]. 应用基础与工程科学学报, 2011, 19 (5): 712- 720
GUAN Xiaoyan, YANG Peiling, LV Ye Analysis on spatial variability of soil properties based on multifractal theory[J]. Journal of Basic Science and Engineering, 2011, 19 (5): 712- 720
doi: 10.3969/j.issn.1005-0930.2011.05.003
20 ZHOU, G B, WU J, ZHANG C L, et al Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13 (3): 226- 234
doi: 10.1007/s11633-016-1006-2
21 张振坤, 张冬梅, 李江, 等 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学, 2022, 43 (Suppl.2): 477- 486
ZHANG Zhenkun, ZHANG Dongmei, LI Jiang, et al LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics, 2022, 43 (Suppl.2): 477- 486
22 刘艺梁, 殷坤龙, 汪洋, 等 基于经验模态分解和神经网络的滑坡变形预测研究[J]. 安全与环境工程, 2013, 20 (4): 14- 17
LIU Yiliang, YIN Kunlong, WANG Yang, et al Study of landslide deformation prediction based on EMD and neural network[J]. Safety and Environmental Engineering, 2013, 20 (4): 14- 17
doi: 10.3969/j.issn.1671-1556.2013.04.004
[1] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[2] 赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.
[3] 熊帆,陈田,卞佰成,刘军. 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报(工学版), 2023, 57(5): 948-956.
[4] 杨恒,李卓,康忠元,田兵,董青. 基于循环神经网络的双目视觉物体6D位姿估计[J]. 浙江大学学报(工学版), 2023, 57(11): 2179-2187.
[5] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[6] 董红召,王桢,张楠,佘翊妮,林盈盈. 电动公交车电池荷电状态的Seq2Seq预测方法[J]. 浙江大学学报(工学版), 2023, 57(10): 2051-2059.
[7] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[8] 冉茂霞,黄沁元,刘鑫,宋弘,吴浩. 基于优化变分模态分解的磁瓦内部缺陷检测[J]. 浙江大学学报(工学版), 2020, 54(11): 2158-2168.
[9] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[10] 王敬昌,陈岭,余珊珊,蒋晨书,吴勇. 基于门控循环单元的多因素感知短期游客人数预测模型[J]. 浙江大学学报(工学版), 2019, 53(12): 2357-2364.