Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1251-1256    DOI: 10.3785/j.issn.1008-973X.2023.06.021
航空航天技术     
基于GRU的扑翼非定常气动特性快速预测
赵嘉墀1(),王天琪2,曾丽芳2,*(),邵雪明2
1. 浙江大学工程师学院,浙江 杭州 310058
2. 浙江大学 航空航天学院,浙江 杭州 310058
Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU
Jia-chi ZHAO1(),Tian-qi WANG2,Li-fang ZENG2,*(),Xue-ming SHAO2
1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2600 KB)   HTML
摘要:

为了克服传统计算流体力学代理模型不能有效模拟流体力学高度非线性系统的困难,解决现有基于深度学习的代理模型难以有效处理时间顺序信息的问题,以扑翼飞行器的二维翼型为研究对象,基于门控循环单元(GRU)与多层感知机,建立扑翼非定常气动参数的快速预测模型,实现对扑翼扑动时高度非定常、非线性气动参数的实时预测. 使用计算流体力学方法获得扑翼二维翼型扑动时的气动参数,以该参数为样本训练预测模型. 将扑翼的扑动振幅、频率、摆动角度与运动时间输入预测模型,快速得到扑翼在对应扑动状态下的升力、阻力与力矩. 实验结果表明,所建立的预测模型精度高、计算速度快,能够实现对扑翼非定常气动参数变化的实时高精度预测.

关键词: 门控循环单元(GRU)多层感知机扑翼气动参数预测深度学习计算流体力学    
Abstract:

Traditional computational fluid dynamics surrogate model cannot effectively simulate the highly nonlinear fluid, and existed deep learning-based surrogate models are difficult to deal with temporal sequence information effectively. Based on the gated recurrent units (GRU) and the multilayer perceptron, a two-dimensional airfoil of a flapping-wing aircraft was studied to establish a model for rapid predict unsteady aerodynamic parameters of the flapping-wing. The real-time prediction for the highly unsteady and nonlinear aerodynamic parameters of the flapping wing was realized. The computational fluid dynamics method was used to obtain the aerodynamic parameters of the flapping two-dimensional airfoil and the parameters were used as samples to train the prediction model. The flapping amplitude, the frequency, the swing angle and the motion time of the flapping wing were fed into the prediction model, and the lift, the drag and the moment in the relevant condition could be quickly output. Experimental results showed that the established prediction model has high accuracy and fast calculation speed. The prediction model could realize real-time high-precision prediction for unsteady aerodynamic parameters of flapping wings.

Key words: gated recurrent units (GRU)    multilayer perceptron    flapping wing    aerodynamic parameter prediction    deep learning    computational fluid dynamics
收稿日期: 2022-06-10 出版日期: 2023-06-30
CLC:  V 19  
基金资助: 国防基础科研计划资助项目(JCKY2019205A006)
通讯作者: 曾丽芳     E-mail: jczhao@zju.edu.cn;lifang_zeng@zju.edu.cn
作者简介: 赵嘉墀(1999—),男,硕士生,从事智能无人机研究. crcid.org/0000-0003-2404-3104. E-mail: jczhao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵嘉墀
王天琪
曾丽芳
邵雪明

引用本文:

赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.

Jia-chi ZHAO,Tian-qi WANG,Li-fang ZENG,Xue-ming SHAO. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1251-1256.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1251

图 1  椭圆形翼型示意图
图 2  扑动参数组合分布
图 3  CFD计算域与网格划分
图 4  气动参数CFD计算结果
层名称 NN 激活函数
输入层
GRU层1
GRU层2
全连接层1
全连接层2
全连接层3
全连接层4
输出层
4
96
64
128
128
64
16
1

tanh
tanh
Leaky-ReLU
Leaky-ReLU
Leaky-ReLU
Leaky-ReLU
表 1  气动参数预测模型结构与超参数
图 5  训练过程损失函数变化曲线
图 6  测试集预测值误差曲线
图 7  预测模型输出与CFD结果对比
运算类型 ${\mathit{T} }_{\rm{c} }$/s 运算设备
模型训练
模型预测
CFD计算
36 000
0.03
600
NVIDIA GeForce RTX 2080ti
NVIDIA GeForce RTX 2080ti
AMD Ryzen 7 5800H
表 2  预测模型和CFD计算时长
1 宋笔锋, 稂鑫雨, 薛栋, 等 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学:技术科学, 2022, 52 (6): 893- 910
SONG Bi-feng, LANG Xin-yu, XUE Dong, et al A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia Sinica Technologica, 2022, 52 (6): 893- 910
doi: 10.1360/SST-2020-0515
2 杨茂, 徐珊珊 耦合运动的襟翼-翼型气动特性数值仿真[J]. 浙江大学学报: 工学版, 2014, 48 (1): 149- 153
YANG Mao, XU Shan-shan Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (1): 149- 153
3 张志君, 陈默, 杨贺捷, 等 基于XFlow的仿生扑翼飞行器机翼气动特性分析[J]. 东北大学学报: 自然科学版, 2021, 42 (6): 821- 828
ZHANG Zhi-jun, CHEN Mo, YANG He-jie, et al Analysis of aerodynamic characteristics of bionic flapping wing aircraft based on XFlow[J]. Journal of Northeastern University: Natural Science, 2021, 42 (6): 821- 828
4 ZHU Z G, ZHAO J T, HE Y Y, et al Aerodynamic analysis of insect-like flapping wings in fan-sweep and parallel motions with the slit effect[J]. Biomimetic Intelligence and Robotics, 2022, 2 (2): 100046
doi: 10.1016/j.birob.2022.100046
5 CHEN S, WANG L, HE Y Y, et al Aerodynamic performance of a flyable flapping wing rotor with passive pitching angle variation[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (9): 9176- 9184
6 HUANG R, HU H, ZHAO Y Nonlinear reduced-order modeling for multiple-input/multiple output aerodynamic systems[J]. AIAA Journal, 2014, 52 (6): 1219- 1231
doi: 10.2514/1.J052323
7 LUCIA D J, BERAN P S, SILVA W A Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40 (1/2): 51- 117
8 YANG L C, YOSHUA B, GEOFFREY H Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
9 SEKAR V, JIANG Q H, SHU C, et al Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31: 057103
doi: 10.1063/1.5094943
10 吕召阳, 聂雪媛, 赵奥博 基于CNN机翼气动系数预测[J]. 北京航空航天大学学报, 2023, 49 (3): 674- 680
LYU Zhao-yang, NIE Xue-yuan, ZHAO Ao-bo Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (3): 674- 680
doi: 10.13700/j.bh.1001-5965.2021.0276
11 HAN R K, WANG Y X, ZHANG Y, et al A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31: 127101
doi: 10.1063/1.5127247
12 PENG J Z, CHEN S H, AUBRY N, et al Time-variant prediction of flow over an airfoil using deep neural network[J]. Physics of Fluids, 2020, 32: 123602
doi: 10.1063/5.0022222
13 陈海, 钱炜祺, 何磊 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36 (2): 294- 299
CHEN Hai, QIAN Wei-qi, HE Lei Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36 (2): 294- 299
14 JIN X W, CHENG P, CHEN W L, et al Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30: 047105
doi: 10.1063/1.5024595
15 李亚超, 熊德意, 张民 神经机器翻译综述[J]. 计算机学报, 2018, 41 (12): 2734- 2755
LI Ya-chao, XIONG De-yi, ZHANG Min A survey of neural machine translation[J]. Chinese Journal of Computers, 2018, 41 (12): 2734- 2755
16 CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1724-1734.
[1] 周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
[2] 刘沛丰,钱璐,赵兴炜,陶波. 航空装配领域中命名实体识别的持续学习框架[J]. 浙江大学学报(工学版), 2023, 57(6): 1186-1194.
[3] 曹晓璐,卢富男,朱翔,翁立波,卢书芳,高飞. 基于草图的兼容性服装生成方法[J]. 浙江大学学报(工学版), 2023, 57(5): 939-947.
[4] 苏育挺,陆荣烜,张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.
[5] 马庆禄,鲁佳萍,唐小垚,段学锋. 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报(工学版), 2023, 57(4): 784-794.
[6] 曾耀,高法钦. 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(3): 455-465.
[7] 兰欢,余建波. 基于深度学习三维成型的钢板表面缺陷检测[J]. 浙江大学学报(工学版), 2023, 57(3): 466-476.
[8] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[9] 鲁建厦,包秦,汤洪涛,邵益平,赵文彬. 无设备人体追踪系统的择优标签方法[J]. 浙江大学学报(工学版), 2023, 57(2): 415-425.
[10] 马骏驰,迪骁鑫,段宗涛,唐蕾. 程序表示学习综述[J]. 浙江大学学报(工学版), 2023, 57(1): 155-169.
[11] 叶晨,战洪飞,林颖俊,余军合,王瑞,钟武昌. 基于推理-情境感知激活模型的设计知识推荐[J]. 浙江大学学报(工学版), 2023, 57(1): 32-46.
[12] 刘近贞,陈飞,熊慧. 多尺度残差网络模型的开放式电阻抗成像算法[J]. 浙江大学学报(工学版), 2022, 56(9): 1789-1795.
[13] 王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
[14] 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.
[15] 夏杰锋,唐武勤,杨强. 光伏航拍红外图像的热斑自动检测方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1640-1647.