航空航天技术 |
|
|
|
|
基于GRU的扑翼非定常气动特性快速预测 |
赵嘉墀1(),王天琪2,曾丽芳2,*(),邵雪明2 |
1. 浙江大学工程师学院,浙江 杭州 310058 2. 浙江大学 航空航天学院,浙江 杭州 310058 |
|
Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU |
Jia-chi ZHAO1(),Tian-qi WANG2,Li-fang ZENG2,*(),Xue-ming SHAO2 |
1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China 2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China |
引用本文:
赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.
Jia-chi ZHAO,Tian-qi WANG,Li-fang ZENG,Xue-ming SHAO. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1251-1256.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.021
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1251
|
1 |
宋笔锋, 稂鑫雨, 薛栋, 等 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学:技术科学, 2022, 52 (6): 893- 910 SONG Bi-feng, LANG Xin-yu, XUE Dong, et al A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia Sinica Technologica, 2022, 52 (6): 893- 910
doi: 10.1360/SST-2020-0515
|
2 |
杨茂, 徐珊珊 耦合运动的襟翼-翼型气动特性数值仿真[J]. 浙江大学学报: 工学版, 2014, 48 (1): 149- 153 YANG Mao, XU Shan-shan Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (1): 149- 153
|
3 |
张志君, 陈默, 杨贺捷, 等 基于XFlow的仿生扑翼飞行器机翼气动特性分析[J]. 东北大学学报: 自然科学版, 2021, 42 (6): 821- 828 ZHANG Zhi-jun, CHEN Mo, YANG He-jie, et al Analysis of aerodynamic characteristics of bionic flapping wing aircraft based on XFlow[J]. Journal of Northeastern University: Natural Science, 2021, 42 (6): 821- 828
|
4 |
ZHU Z G, ZHAO J T, HE Y Y, et al Aerodynamic analysis of insect-like flapping wings in fan-sweep and parallel motions with the slit effect[J]. Biomimetic Intelligence and Robotics, 2022, 2 (2): 100046
doi: 10.1016/j.birob.2022.100046
|
5 |
CHEN S, WANG L, HE Y Y, et al Aerodynamic performance of a flyable flapping wing rotor with passive pitching angle variation[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (9): 9176- 9184
|
6 |
HUANG R, HU H, ZHAO Y Nonlinear reduced-order modeling for multiple-input/multiple output aerodynamic systems[J]. AIAA Journal, 2014, 52 (6): 1219- 1231
doi: 10.2514/1.J052323
|
7 |
LUCIA D J, BERAN P S, SILVA W A Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40 (1/2): 51- 117
|
8 |
YANG L C, YOSHUA B, GEOFFREY H Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
|
9 |
SEKAR V, JIANG Q H, SHU C, et al Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31: 057103
doi: 10.1063/1.5094943
|
10 |
吕召阳, 聂雪媛, 赵奥博 基于CNN机翼气动系数预测[J]. 北京航空航天大学学报, 2023, 49 (3): 674- 680 LYU Zhao-yang, NIE Xue-yuan, ZHAO Ao-bo Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (3): 674- 680
doi: 10.13700/j.bh.1001-5965.2021.0276
|
11 |
HAN R K, WANG Y X, ZHANG Y, et al A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31: 127101
doi: 10.1063/1.5127247
|
12 |
PENG J Z, CHEN S H, AUBRY N, et al Time-variant prediction of flow over an airfoil using deep neural network[J]. Physics of Fluids, 2020, 32: 123602
doi: 10.1063/5.0022222
|
13 |
陈海, 钱炜祺, 何磊 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36 (2): 294- 299 CHEN Hai, QIAN Wei-qi, HE Lei Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36 (2): 294- 299
|
14 |
JIN X W, CHENG P, CHEN W L, et al Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30: 047105
doi: 10.1063/1.5024595
|
15 |
李亚超, 熊德意, 张民 神经机器翻译综述[J]. 计算机学报, 2018, 41 (12): 2734- 2755 LI Ya-chao, XIONG De-yi, ZHANG Min A survey of neural machine translation[J]. Chinese Journal of Computers, 2018, 41 (12): 2734- 2755
|
16 |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1724-1734.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|