Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1120-1127    DOI: 10.3785/j.issn.1008-973X.2023.06.007
土木工程、水利工程     
基于集成学习与深度学习的日供水量预测方法
周欣磊1(),顾海挺1,刘晶1,许月萍1,*(),耿芳2,王冲2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江水文新技术开发经营公司,浙江 杭州 310009
Daily water supply prediction method based on integrated learning and deep learning
Xin-lei ZHOU1(),Hai-ting GU1,Jing LIU1,Yue-ping XU1,*(),Fang GENG2,Chong WANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Hydrology New Technology Development Company, Hangzhou 310009, China
 全文: PDF(1780 KB)   HTML
摘要:

为了有效改善日供水量预测精度低、泛化能力不足的问题,以义乌市4个水厂的历史日供水数据为基础,提出基于集成学习算法改进的长短时记忆(LSTM)神经网络的供水预测方法. 该方法以拉依达准则预处理后的历史日供水量作为数据输入,将具备长期时序信息记忆能力的LSTM神经网络作为集成学习的弱预测器,使用网格搜索法进行网络超参数调优,使用AdaBoost集成学习算法对弱预测器进行加权组合得到强预测器. 结果表明:与随机森林、AdaBoost与LSTM神经网络相比,基于集成学习算法改进的LSTM神经网络有最高的纳什效率系数(NSE)、最低的均方根误差(RMSE)与平均绝对误差(MAE),对日供水数据的变化趋势与峰值的拟合效果最好;改进LSTM供水预测方法的时序预测精度得到极大提升,有较好的泛化能力、稳定的预测性能,能够为城市水资源合理配置、一体化智能供水调度提供重要参考.

关键词: 供水量预测集成学习深度学习组合模型长短时记忆(LSTM)神经网络    
Abstract:

Making use of the historical daily water supply data of four water plants in Yiwu city, a new water supply prediction model based on long short term memory (LSTM) neural network improved by integrated learning algorithm was proposed, in order to effectively resolve the problems of low accuracy and insufficient generalization ability of the daily water supply prediction. In the model, a historical daily water supply after pre-processing by Pauta criterion was taken as the data input, the LSTM neural network with long-term temporal information memory was applied as the weak predictor of integrated learning, the grid search method was utilized for network hyperparameter tuning, and the AdaBoost integrated learning algorithm was used to weight the combination of the weak predictors to obtain the strong predictor. Results show that the improved LSTM neural network based on integrated learning algorithm has the highest Nash efficiency coefficient (NSE) with the lowest root mean square error (RMSE) and mean absolute error (MAE), the best fitting effect on the change trend and the peak value of daily water supply data, compared with the random forest (RF), AdaBoost and LSTM neural network. The time series prediction accuracy of the improved LSTM water supply forecasting model is significantly improved, with good generalization ability and stable prediction performance. The results can provide an important reference for the rational allocation of urban water resources planning and integrated intelligent water supply scheduling.

Key words: water supply prediction    integrated learning    deep learning    combinatorial model    long short term memory (LSTM) neural network
收稿日期: 2022-06-23 出版日期: 2023-06-30
CLC:  TV 213  
基金资助: 浙江省自然科学基金资助项目(LZ20E090001);国家重点研发项目(2019YFC0408800)
通讯作者: 许月萍     E-mail: 0922449@zju.edu.cn;yuepingxu@zju.edu.cn
作者简介: 周欣磊(2000—),男,助理研究员,从事水资源规划研究. orcid.org/0000-0002-3792-3736. E-mail: 0922449@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周欣磊
顾海挺
刘晶
许月萍
耿芳
王冲

引用本文:

周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.

Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1120

图 1  义乌市的4座水厂
图 2  日供水序列不同延迟期数的自相关系数
Td/d NSE MAE/(m3·d?1) RMSE/(m3·d?1)
2 0.919 1 136 1 601
3 0.917 1 146 1 616
4 0.924 1 242 1 548
5 0.918 1 154 1 607
6 0.924 1 241 1 550
7 0.927 1 104 1 520
8 0.921 1 233 1 581
9 0.921 1 168 1 581
10 0.919 1 207 1 605
表 1  不同输入天数的LSTM神经网络方法性能对比
NRF NSE MAE/( m3·d?1) RMSE/( m3·d?1)
10 0.937 864 1 408
20 0.938 879 1 405
30 0.938 830 1 395
40 0.937 848 1 416
50 0.938 861 1 402
60 0.941 841 1 367
70 0.944 819 1 335
80 0.938 873 1 402
90 0.939 853 1 389
100 0.939 837 1 390
表 2  不同决策树个数的随机森林方法性能对比
DRF NSE MAE/( m3·d?1) RMSE/( m3·d?1)
2 0.872 1 382 2 009
3 0.933 874 1 455
4 0.939 853 1 390
5 0.932 915 1 469
6 0.923 928 1 559
7 0.921 971 1 577
8 0.896 1 134 1 816
9 0.881 1 193 1 937
10 0.860 1 317 2 107
11 0.824 1 471 2 363
表 3  不同决策树深度的随机森林方法性能对比
NAB NSE MAE/( m3·d?1) RMSE/( m3·d?1)
10 0.846 1 432 2 207
20 0.793 1 701 2 560
30 0.860 1 404 2 102
40 0.802 1 796 2 503
50 0.783 1 783 2 620
60 0.844 1 406 2 224
70 0.822 1 659 2 375
80 0.822 1 782 2 373
90 0.829 1 571 2 324
100 0.814 1 534 2 424
表 4  不同决策树个数的AdaBoost方法性能对比
NBS NSE MAE/( m3·d?1) RMSE/( m3·d?1)
16 0.924 1 115 1 548
32 0.927 1 335 1 646
64 0.917 1 170 1 617
128 0.896 1 376 1 811
256 0.761 1 980 2 752
表 5  不同批量大小的改进LSTM方法性能对比
N NSE
第1次 第2次 第3次 第4次 第5次 平均值
2 0.897 0.898 0.894 0.883 0.896 0.894
3 0.852 0.853 0.849 0.839 0.851 0.849
4 0.839 0.842 0.835 0.829 0.840 0.837
5 0.831 0.836 0.831 0.824 0.836 0.832
6 0.830 0.833 0.830 0.822 0.833 0.830
7 0.830 0.832 0.828 0.822 0.830 0.828
8 0.796 0.824 0.815 0.826 0.793 0.811
9 0.772 0.827 0.786 0.810 0.793 0.798
10 0.775 0.810 0.790 0.811 0.779 0.793
表 6  不同弱预测器个数的改进LSTM方法性能对比
图 3  4座水厂不同供水预测方法的日供水量预测结果曲线图
方法 赤岸水厂 大陈水厂 佛堂水厂 中心水厂
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
NSE MAE/
(m3·d?1)
RMSE/
(m3·d?1)
RF 0.852 171.5 239.1 0.943 499.5 674.0 0.897 1 205.1 1 812.2 0.894 1 122.7 1 827.5
AdaBoost 0.844 187.8 245.2 0.892 791.9 929.8 0.816 1 587.6 2 420.7 0.836 1 611.3 2 275.0
LSTM 0.900 158.3 196.1 0.961 475.9 557.7 0.913 1 190.0 1 662.0 0.905 1 258.9 1 733.6
改进LSTM 0.929 118.4 165.2 0.971 402.2 484.8 0.925 1 131.8 1 545.2 0.924 1 113.9 1 547.2
表 7  4座水厂不同供水预测方法的性能对比
1 李原园, 曹建廷, 黄火键, 等 国际上水资源综合管理进展[J]. 水科学进展, 2018, 29 (1): 127- 137
LI Yuan-yuan, CAO Jian-ting, HUANG Huo-jian, et al International progress in integrated water resources management[J]. Advances in Water Science, 2018, 29 (1): 127- 137
2 姜彤, 孙赫敏, 李修仓, 等 气候变化对水文循环的影响[J]. 气象, 2020, 46 (3): 289- 300
JIANG Tong, SUN He-min, LI Xiu-cang, et al Impacts of climate change on water cycle[J]. Meteorological Monthly, 2020, 46 (3): 289- 300
3 张建云, 王国庆, 金君良, 等 1956—2018 年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31 (2): 153- 161
ZHANG Jian-yun, WANG Guo-qing, JIN Jun-liang, et al Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020, 31 (2): 153- 161
4 PACCHIN E, GAGLIARDI F, ALVISI S, et al A comparison of short-term water demand forecasting models[J]. Water Resources Management, 2019, 33: 1481- 1497
doi: 10.1007/s11269-019-02213-y
5 BRENTAN B M, LUVIZOTTO E, HERRERA M, et al Hybrid regression model for near real-time urban water demand forecasting[J]. Journal of Computational and Applied Mathematics, 2017, 309: 532- 541
doi: 10.1016/j.cam.2016.02.009
6 NARAYANAN L K, SANKARANARAYANAN S, RODRIGUES J J P C, et al Water demand forecasting using deep learning in IoT enabled water distribution network[J]. International Journal of Computers Communications and Control, 2020, 15 (6): 3977
7 SHUANG Q, ZHAO R T Water demand prediction using machine learning methods: a case study of the Beijing–Tianjin–Hebei region in China[J]. Water, 2021, 13 (3): 310
doi: 10.3390/w13030310
8 GUO G, LIU S, WU Y, et al Short-term water demand forecast based on deep learning method[J]. Journal of Water Resources Planning and Management, 2018, 144 (12): 04018076
doi: 10.1061/(ASCE)WR.1943-5452.0000992
9 XENOCHRISTOU M, HUTTON C, HOFMAN J, et al Short-term forecasting of household water demand in the UK using an interpretable machine learning approach[J]. Journal of Water Resources Planning and Management, 2021, 147 (4): 04021004
doi: 10.1061/(ASCE)WR.1943-5452.0001325
10 HUANG H, ZHANG Z, SONG F An ensemble-learning-based method for short-term water demand forecasting[J]. Water Resources Management, 2021, 35 (6): 1757- 1773
doi: 10.1007/s11269-021-02808-4
11 王忠红, 温进化 义乌市水资源开发利用对策研究[J]. 浙江水利科技, 2016, 44 (4): 23- 25
WANG Zhong-hong, WEN Jin-hua Research on countermeasures for water resources development and utilization in Yiwu City[J]. Zhejiang Hydrotechnics, 2016, 44 (4): 23- 25
12 浙江省水利厅. 2021年浙江省水资源公报[EB/OL]. (2022-08-01) [2022-08-20]. http://slt.zj.gov.cn/art/2022/8/1/art_1229243017_4960161.html.
13 中华人民共和国水利部. 2021 年中国水资源公报[EB/OL]. (2022-06-15) [2022-08-20]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html.
14 鲍倩倩, 谢磊, 周杨军, 等 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, (9): 47- 51
BAO Qian-qian, XIE Lei, ZHOU Yang-jun, et al Study on the population carrying capacity of Yiwu City under water scarcity constraint[J]. Water Resources Planning and Design, 2020, (9): 47- 51
15 BREIMAN L Bagging predictors[J]. Machine Learning, 1996, 24: 123- 140
16 HO T K The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (8): 832- 844
doi: 10.1109/34.709601
17 FREUND Y Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121 (2): 256- 285
18 郭冠呈, 刘书明, 李俊禹, 等 基于双向长短时神经网络的水量预测方法研究[J]. 给水排水, 2018, 44 (3): 123- 126
GUO Guan-cheng, LIU Shu-ming, LI Jun-yu, et al Study on water quantity prediction method based on bidirectional long and short time neural network[J]. Water and Wastewater Engineering, 2018, 44 (3): 123- 126
19 KAO I F, ZHOU Y, CHANG L C, et al Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting[J]. Journal of Hydrology, 2020, 583: 124631
doi: 10.1016/j.jhydrol.2020.124631
20 NI L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
21 DU B, ZHOU Q, GUO J, et al Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting[J]. Expert Systems with Applications, 2021, 171: 114571
doi: 10.1016/j.eswa.2021.114571
[1] 刘沛丰,钱璐,赵兴炜,陶波. 航空装配领域中命名实体识别的持续学习框架[J]. 浙江大学学报(工学版), 2023, 57(6): 1186-1194.
[2] 赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.
[3] 曹晓璐,卢富男,朱翔,翁立波,卢书芳,高飞. 基于草图的兼容性服装生成方法[J]. 浙江大学学报(工学版), 2023, 57(5): 939-947.
[4] 苏育挺,陆荣烜,张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.
[5] 马庆禄,鲁佳萍,唐小垚,段学锋. 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报(工学版), 2023, 57(4): 784-794.
[6] 曾耀,高法钦. 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(3): 455-465.
[7] 兰欢,余建波. 基于深度学习三维成型的钢板表面缺陷检测[J]. 浙江大学学报(工学版), 2023, 57(3): 466-476.
[8] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[9] 鲁建厦,包秦,汤洪涛,邵益平,赵文彬. 无设备人体追踪系统的择优标签方法[J]. 浙江大学学报(工学版), 2023, 57(2): 415-425.
[10] 马骏驰,迪骁鑫,段宗涛,唐蕾. 程序表示学习综述[J]. 浙江大学学报(工学版), 2023, 57(1): 155-169.
[11] 叶晨,战洪飞,林颖俊,余军合,王瑞,钟武昌. 基于推理-情境感知激活模型的设计知识推荐[J]. 浙江大学学报(工学版), 2023, 57(1): 32-46.
[12] 刘近贞,陈飞,熊慧. 多尺度残差网络模型的开放式电阻抗成像算法[J]. 浙江大学学报(工学版), 2022, 56(9): 1789-1795.
[13] 王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
[14] 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.
[15] 夏杰锋,唐武勤,杨强. 光伏航拍红外图像的热斑自动检测方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1640-1647.