土木工程、水利工程 |
|
|
|
|
基于集成学习与深度学习的日供水量预测方法 |
周欣磊1(),顾海挺1,刘晶1,许月萍1,*(),耿芳2,王冲2 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江水文新技术开发经营公司,浙江 杭州 310009 |
|
Daily water supply prediction method based on integrated learning and deep learning |
Xin-lei ZHOU1(),Hai-ting GU1,Jing LIU1,Yue-ping XU1,*(),Fang GENG2,Chong WANG2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Zhejiang Hydrology New Technology Development Company, Hangzhou 310009, China |
引用本文:
周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.007
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1120
|
1 |
李原园, 曹建廷, 黄火键, 等 国际上水资源综合管理进展[J]. 水科学进展, 2018, 29 (1): 127- 137 LI Yuan-yuan, CAO Jian-ting, HUANG Huo-jian, et al International progress in integrated water resources management[J]. Advances in Water Science, 2018, 29 (1): 127- 137
|
2 |
姜彤, 孙赫敏, 李修仓, 等 气候变化对水文循环的影响[J]. 气象, 2020, 46 (3): 289- 300 JIANG Tong, SUN He-min, LI Xiu-cang, et al Impacts of climate change on water cycle[J]. Meteorological Monthly, 2020, 46 (3): 289- 300
|
3 |
张建云, 王国庆, 金君良, 等 1956—2018 年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31 (2): 153- 161 ZHANG Jian-yun, WANG Guo-qing, JIN Jun-liang, et al Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020, 31 (2): 153- 161
|
4 |
PACCHIN E, GAGLIARDI F, ALVISI S, et al A comparison of short-term water demand forecasting models[J]. Water Resources Management, 2019, 33: 1481- 1497
doi: 10.1007/s11269-019-02213-y
|
5 |
BRENTAN B M, LUVIZOTTO E, HERRERA M, et al Hybrid regression model for near real-time urban water demand forecasting[J]. Journal of Computational and Applied Mathematics, 2017, 309: 532- 541
doi: 10.1016/j.cam.2016.02.009
|
6 |
NARAYANAN L K, SANKARANARAYANAN S, RODRIGUES J J P C, et al Water demand forecasting using deep learning in IoT enabled water distribution network[J]. International Journal of Computers Communications and Control, 2020, 15 (6): 3977
|
7 |
SHUANG Q, ZHAO R T Water demand prediction using machine learning methods: a case study of the Beijing–Tianjin–Hebei region in China[J]. Water, 2021, 13 (3): 310
doi: 10.3390/w13030310
|
8 |
GUO G, LIU S, WU Y, et al Short-term water demand forecast based on deep learning method[J]. Journal of Water Resources Planning and Management, 2018, 144 (12): 04018076
doi: 10.1061/(ASCE)WR.1943-5452.0000992
|
9 |
XENOCHRISTOU M, HUTTON C, HOFMAN J, et al Short-term forecasting of household water demand in the UK using an interpretable machine learning approach[J]. Journal of Water Resources Planning and Management, 2021, 147 (4): 04021004
doi: 10.1061/(ASCE)WR.1943-5452.0001325
|
10 |
HUANG H, ZHANG Z, SONG F An ensemble-learning-based method for short-term water demand forecasting[J]. Water Resources Management, 2021, 35 (6): 1757- 1773
doi: 10.1007/s11269-021-02808-4
|
11 |
王忠红, 温进化 义乌市水资源开发利用对策研究[J]. 浙江水利科技, 2016, 44 (4): 23- 25 WANG Zhong-hong, WEN Jin-hua Research on countermeasures for water resources development and utilization in Yiwu City[J]. Zhejiang Hydrotechnics, 2016, 44 (4): 23- 25
|
12 |
浙江省水利厅. 2021年浙江省水资源公报[EB/OL]. (2022-08-01) [2022-08-20]. http://slt.zj.gov.cn/art/2022/8/1/art_1229243017_4960161.html.
|
13 |
中华人民共和国水利部. 2021 年中国水资源公报[EB/OL]. (2022-06-15) [2022-08-20]. http://www.mwr.gov.cn/sj/tjgb/szygb/202206/t20220615_1579315.html.
|
14 |
鲍倩倩, 谢磊, 周杨军, 等 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, (9): 47- 51 BAO Qian-qian, XIE Lei, ZHOU Yang-jun, et al Study on the population carrying capacity of Yiwu City under water scarcity constraint[J]. Water Resources Planning and Design, 2020, (9): 47- 51
|
15 |
BREIMAN L Bagging predictors[J]. Machine Learning, 1996, 24: 123- 140
|
16 |
HO T K The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (8): 832- 844
doi: 10.1109/34.709601
|
17 |
FREUND Y Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121 (2): 256- 285
|
18 |
郭冠呈, 刘书明, 李俊禹, 等 基于双向长短时神经网络的水量预测方法研究[J]. 给水排水, 2018, 44 (3): 123- 126 GUO Guan-cheng, LIU Shu-ming, LI Jun-yu, et al Study on water quantity prediction method based on bidirectional long and short time neural network[J]. Water and Wastewater Engineering, 2018, 44 (3): 123- 126
|
19 |
KAO I F, ZHOU Y, CHANG L C, et al Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting[J]. Journal of Hydrology, 2020, 583: 124631
doi: 10.1016/j.jhydrol.2020.124631
|
20 |
NI L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
|
21 |
DU B, ZHOU Q, GUO J, et al Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting[J]. Expert Systems with Applications, 2021, 171: 114571
doi: 10.1016/j.eswa.2021.114571
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|