计算机与控制工程 |
|
|
|
|
多尺度残差网络模型的开放式电阻抗成像算法 |
刘近贞1,2( ),陈飞1,2,熊慧1,2 |
1. 天津工业大学 控制科学与工程学院,天津 300387 2. 天津工业大学 天津市电气装备智能控制重点实验室,天津 300387 |
|
Open electrical impedance imaging algorithm based on multi-scale residual network model |
Jin-zhen LIU1,2( ),Fei CHEN1,2,Hui XIONG1,2 |
1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China 2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China |
1 |
JIANG D, WU Y, DEMOSTHENOUS A Hand gesture recognition using three-dimensional electrical impedance tomography[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (9): 1554- 1558
doi: 10.1109/TCSII.2020.3006430
|
2 |
全卉, 马利庄 基于生物电阻抗的人体内脏脂肪预测方法[J]. 浙江大学学报: 工学版, 2011, 45 (2): 301- 305 QUAN Hui, MA Li-zhuang Visceral fat estimation method based on bioelectrical impedance technology[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (2): 301- 305
|
3 |
BAYFORD R, POLYDORIDES N Focus on recent advances in electrical impedance tomography[J]. Physiological Measurement, 2019, 40 (10): 100401
doi: 10.1088/1361-6579/ab42cd
|
4 |
LIU S, JIA J, ZHANG Y D, et al Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning[J]. IEEE Transactions on Medical Imaging, 2018, 37 (9): 2090- 2102
doi: 10.1109/TMI.2018.2816739
|
5 |
YANG Z, YAN G Damage detection for composites using carbon nanotube film and electrical impedance tomography technology[J]. Advanced Experimental Mechanics, 2018, 3: 161- 166
|
6 |
ZHAO Z, CHANG M Y, FRERICHS I, et al Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study[J]. Minerva Anestesiol, 2020, 86 (2): 172- 180
|
7 |
WITKOWSKA-WROBEL A, ARISTOVICH K, CRAWFORD A, et al Imaging of focal seizures with electrical impedance tomography and depth electrodes in real time[J]. Neuroimage, 2021, 234 (4): 117972
|
8 |
LIU D, KHAMBAMPATI A K, KIM S, et al Multi-phase flow monitoring with electrical impedance tomography using level set based method[J]. Nuclear Engineering and Design, 2015, 289: 108- 116
doi: 10.1016/j.nucengdes.2015.04.023
|
9 |
LIU D, KHAMBAMPATI A K, Du J A parametric level set method for electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37 (2): 451- 460
doi: 10.1109/TMI.2017.2756078
|
10 |
ALBERTI G S, AMMARI H, JIN B, et al The linearized inverse problem in multifrequency electrical impedance tomography[J]. SIAM Journal on Imaging Sciences, 2016, 9 (4): 1525- 1551
doi: 10.1137/16M1061564
|
11 |
WANG J, HAN B, WAN W Elastic-net regularization for nonlinear electrical impedance tomography with a splitting approach[J]. Applicable Analysis, 2019, 98 (12): 2201- 2217
doi: 10.1080/00036811.2018.1451644
|
12 |
SANTOS T B R, NAKANISHI R M, KAIPIO J P, et al Introduction of sample based prior into the D-bar method through a schur complement property[J]. IEEE Transactions On Medical Imaging, 2020, 39 (12): 4085- 4093
doi: 10.1109/TMI.2020.3012428
|
13 |
QIN X, ZHANG Z, HUANG C, et al U2-Net: going deeper with nested U-structure for salient object detection [J]. Pattern Recognition, 2020, 106: 107404
doi: 10.1016/j.patcog.2020.107404
|
14 |
KO Y F, CHENG K S U-Net-based approach for automatic lung segmentation in electrical impedance tomography[J]. Physiological Measurement, 2021, 42 (2): 025002
doi: 10.1088/1361-6579/abe021
|
15 |
REN S, SUN K, TAN C, et al A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (7): 4887- 4897
doi: 10.1109/TIM.2019.2954722
|
16 |
JIN K H, MCCANN M T, FROUSTEY E, et al Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26 (9): 4509- 4522
doi: 10.1109/TIP.2017.2713099
|
17 |
CHEN Y, LI K, HAN Y Electrical resistance tomography with conditional generative adversarial networks[J]. Measurement Science and Technology, 2020, 31 (5): 055401
doi: 10.1088/1361-6501/ab62c4
|
18 |
HAMILTON S J, HAUPTMANN A Deep D-bar: real-time electrical impedance tomography imaging with deep neural networks[J]. IEEE Transactions on Medical Imaging, 2018, 37 (10): 2367- 2377
doi: 10.1109/TMI.2018.2828303
|
19 |
LI X, LU R, WANG Q, et al One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography[J]. Review of Scientific Instruments, 2020, 91 (12): 124704
doi: 10.1063/5.0025881
|
20 |
SUN B, YUE S, HAO Z, et al An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography[J]. IEEE Sensors Journal, 2019, 19 (8): 3049- 3057
doi: 10.1109/JSEN.2019.2892179
|
21 |
ZONG Z, WANG Y, WEI Z A review of algorithms and hardware implementations in electrical impedance tomography[J]. Progress In Electromagnetics Research, 2020, 169: 59- 71
doi: 10.2528/PIER20120401
|
22 |
LI F, TAN C, DONG F, et al V-Net deep imaging method for electrical resistance tomography[J]. IEEE Sensors Journal, 2020, 20 (12): 6460- 6469
doi: 10.1109/JSEN.2020.2973337
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|