计算机技术 |
|
|
|
|
基于改进MobileNet v2的垃圾图像分类算法 |
陈智超1,2(),焦海宁1,2,*(),杨杰1,2,曾华福1,2 |
1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000 2. 江西省磁悬浮技术重点实验室,江西 赣州 341000 |
|
Garbage image classification algorithm based on improved MobileNet v2 |
Zhi-chao CHEN1,2(),Hai-ning JIAO1,2,*(),Jie YANG1,2,Hua-fu ZENG1,2 |
1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China 2. Jiangxi Provincial Key Laboratory of Maglev Technology, Ganzhou 341000, China |
引用本文:
陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG. Garbage image classification algorithm based on improved MobileNet v2. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1490-1499.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.010
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1490
|
1 |
吕君, 翟晓颖 基于横向视角的垃圾回收处理体系的国际比较研究及启示[J]. 生态经济, 2015, 31 (12): 102- 106 LV Jun, ZHAI Xiao-ying An international comparison study and enlightenment of waste recycling system based on lateral perspective[J]. Ecological Economy, 2015, 31 (12): 102- 106
doi: 10.3969/j.issn.1671-4407.2015.12.022
|
2 |
WANG Z L, LI H, YANG X T Vision-based robotic system for on-site construction and demolition waste sorting and recycling[J]. Journal of Building Engineering, 2020, 32: 1- 13
|
3 |
武凌, 王浩, 张晓春, 等 基于深度迁移学习的垃圾分类系统设计与实现[J]. 沈阳大学学报: 自然科学版, 2020, 32 (6): 496- 502 WU Ling, WANG Hao, ZHANG Xiao-chun, et al Design and implementation of garbage classification system based on deep transfer learning[J]. Journal of Shenyang University: Natural Science, 2020, 32 (6): 496- 502
|
4 |
康庄, 杨杰, 郭濠奇 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报: 工学版, 2020, 54 (7): 1272- 1280 KANG Zhuang, YANG Jie, GUO Hao-qi Automatic garbage classification system based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1272- 1280
|
5 |
王爽 微信小程序在垃圾分类中的应用研究[J]. 信息与电脑, 2019, 31 (22): 66- 68 WANG Shuang Research on WeChat small program in garbage classification application[J]. China Computer and Communication, 2019, 31 (22): 66- 68
|
6 |
GORLI R Interlinking of IoT, big data, smart mobile app with smart garbage monitoring[J]. International Journal of Computerences and Engineering, 2017, 5 (1): 70- 74
|
7 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012: 1097-1105.
|
8 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
9 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-02-22]. http://arxiv.org/abs/1409.1556.
|
10 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
11 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size [EB/OL]. [2021-02-22]. https://arxiv.org/pdf/1602.07360.pdf.
|
12 |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
13 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1251-1258.
|
14 |
HOWARD A, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1704-1712.
|
15 |
YANG Z, LI D WasNet: a neural network-based garbage collection management system[J]. IEEE Access, 2020, 8: 103984- 103993
doi: 10.1109/ACCESS.2020.2999678
|
16 |
LIU X, WU Z Z, ZOU L, et al. Lightweight neural network based garbage image classification using a deep mutual learning[C]// 11th International Symposium on Parallel Architectures, Algorithms and Programming. Shenzhen: Springer, 2021: 212-223.
|
17 |
袁建野, 南新元, 蔡鑫, 等 基于轻量级残差网路的垃圾图片分类方法[J]. 环境工程, 2021, 39 (2): 110- 115 YUAN Jian-ye, NAN Xin-yuan, CAI Xin, et al Garbage image classification by lightweight residual network[J]. Environmental Engineering, 2021, 39 (2): 110- 115
|
18 |
高明, 陈玉涵, 张泽慧, 等 基于新型空间注意力机制和迁移学习的垃圾图像分类算法[J]. 系统工程理论与实践, 2021, 41 (2): 498- 512 GAO Min, CHEN Yu-han, ZHANG Ze-hui, et al Classification algorithm of garbage images based on novel spatial attention mechanism and transfer learning[J]. Systems Engineering Theory and Practice, 2021, 41 (2): 498- 512
doi: 10.12011/SETP2020-1645
|
19 |
SHI C, XIA R, WANG L A novel multi-branch channel expansion network for garbage image classification[J]. IEEE Access, 2020, 8: 154436- 154452
doi: 10.1109/ACCESS.2020.3016116
|
20 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
21 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
22 |
NASRIN S, BADAWI D, CETIN A E, et al MF-Net: compute-in-memory SRAM for multibit precision inference using memory-immersed data conversion and multiplication-free operators[J]. IEEE Transactions on Circuits and Systems, 2021, 68 (5): 1966- 1978
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|