计算机技术、信息工程 |
|
|
|
|
融合注意力机制的高效率网络车型识别 |
柳长源1(),何先平1,毕晓君2 |
1. 哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080 2. 中央民族大学 信息工程学院,北京 100081 |
|
Efficient network vehicle recognition combined with attention mechanism |
Chang-yuan LIU1(),Xian-ping HE1,Xiao-jun BI2 |
1. College of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China 2. School of Information Engineering, Minzu University of China, Beijing 100081, China |
1 |
李琳辉, 钱波, 连静 基于卷积神经网络的交通场景语义分割方法研究[J]. 通信学报, 2018, 39 (4): 123- 130 LI Lin-hui, QIAN Bo, LIAN Jing Research on semantic segmentation method of traffic scene based on convolutional neural network[J]. Journal of Communications, 2018, 39 (4): 123- 130
doi: 10.11959/j.issn.1000-436x.2018053
|
2 |
JIANG C, ZHANG B. Weakly-supervised vehicle detection and classification by convolutional neural network [C]// 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Datong: IEEE, 2016: 570-575.
|
3 |
KRIZHEYSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
4 |
DONG Z, WU Y, PEI M, et al Vehicle type classification using a semisupervised convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (4): 2247- 2256
doi: 10.1109/TITS.2015.2402438
|
5 |
袁公萍, 汤一平, 韩旺明 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报:工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming Vehicle recognition method based on deep convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
|
6 |
范丽丽, 赵宏伟, 赵浩宇 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28 (5): 1152- 1164 FAN Li-li, ZHAO Hong-wei, ZHAO Hao-yu A review of target detection based on deep convolution neural network[J]. Optical Precision Engineering, 2020, 28 (5): 1152- 1164
|
7 |
杨州, 慕晓冬, 王舒洋 基于多尺度特征融合的遥感图像场景分类[J]. 光学精密工程, 2018, 26 (12): 3099- 3107 YANG Zhou, MU Xiao-dong, WANG Shu-yang Remote sensing image scene classification based on multi-scale feature fusion[J]. Optical Precision Engineering, 2018, 26 (12): 3099- 3107
doi: 10.3788/OPE.20182612.3099
|
8 |
李大湘, 王小雨 基于DCNN特征与集成学习的车型分类算法[J]. 计算机工程与设计, 2020, 41 (6): 1624- 1628 LI Da-xiang, WANG Xiao-yu Vehicle classification algorithm based on DCNN feature and ensemble learning[J]. Computer Engineering and Design, 2020, 41 (6): 1624- 1628
|
9 |
TAN M, LE Q EfficientNet: rethinking model scaling for convolutional neural networks[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, (5): 6105- 6114
|
10 |
孙旭豪, 傅中添, 严玲 EfficientNet在阴虚证眼象识别中的应用研究[J]. 中医药信息, 2020, 37 (3): 29- 34 SUN Xu-hao, FU Zhong-tian, YAN Ling Application of EfficientNet in eye image recognition of yin deficiency syndrome[J]. Chinese Medicine Information, 2020, 37 (3): 29- 34
|
11 |
张典, 汪海涛, 姜瑛, 等 基于轻量级网络的实时人脸识别算法研究[J]. 计算机科学与探索, 2020, 14 (2): 317- 324 ZHANG Dian, WANG Hai-tao, JIANG Ying, et al Research on real-time face recognition algorithm based on lightweight network[J]. Computer Science and Exploration, 2020, 14 (2): 317- 324
doi: 10.3778/j.issn.1673-9418.1907037
|
12 |
BARRET Z, QUOC V L Neural architecture search with reinforcement learning[J]. Pointwise Convolutional Neural Networks, 2016, (2): 1- 15
|
13 |
HARJOSEPUTRO Y, YUDA I P, DANUKUSUMO K P. MobileNets: efficient convolutional neural network for identification of protected birds [J]. International Journal on Advanced Science Engineering and Information Technology, 2020, 10(6): 2290-2296.
|
14 |
BING S H, MING K T, YEUNG S K Pointwise convolutional neural networks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 984–993.
|
15 |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
17 |
李振宇, 邓向阳, 张立民 基于Swish激活函数的双通道CNN结构[J]. 计算机与数字工程, 2020, 48 (6): 1413- 1416 LI Zhen-yu, DENG Xiang-yang, ZHANG Li-min Dual channel CNN architecture based on Swish activation function[J]. Computer and Digital Engineering, 2020, 48 (6): 1413- 1416
doi: 10.3969/j.issn.1672-9722.2020.06.028
|
18 |
吴俊杰, 刘冠男, 王静远 数据智能: 趋势与挑战[J]. 系统工程理论与实践, 2020, 40 (8): 2116- 2149 WU Jun-jie, LIU Guan-nan, WANG Jing-yuan Data intelligence: trends and challenges[J]. Systems Engineering: Theory and Practice, 2020, 40 (8): 2116- 2149
doi: 10.12011/1000-6788-2020-0027-34
|
19 |
吴晨. 基于差分的生成式对抗网络GP算法及其应用研究[D]. 南京: 南京邮电大学, 2019. WU Chen. Research on GP algorithm and its application based on differential generation countermeasure network [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
21 |
周非, 李阳, 范馨月 图像分类卷积神经网络的反馈损失计算方法改进[J]. 小型微型计算机系统, 2019, 40 (7): 1532- 1537 ZHOU Fei, LI Yang, FAN Xin-yue Improvement of feedback loss calculation method of image classification convolution neural network[J]. Miniature Microcomputer System, 2019, 40 (7): 1532- 1537
doi: 10.3969/j.issn.1000-1220.2019.07.032
|
22 |
梁杰, 陈嘉豪, 张雪芹 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报: 自然科学版, 2019, 59 (7): 523- 529 LIANG Jie, CHEN Jia-hao, ZHANG Xue-qin Anomaly detection based on independent heat coding and convolutional neural network[J]. Journal of Tsinghua University: Natural Science Edition, 2019, 59 (7): 523- 529
|
23 |
倪旭 基于标签平滑正则化的行人重识别研究[J]. 电脑知识与技术, 2019, 15 (8): 150- 152 NI Xu Research on pedestrian recognition based on label smoothing and regularization[J]. Computer Knowledge and Technology, 2019, 15 (8): 150- 152
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|