计算机技术、信息工程 |
|
|
|
|
IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法 |
许萌1( ),王丹1,*( ),李致远1,陈远方2 |
1. 北京工业大学 信息学部,北京 100124 2. 北京机械设备研究所,北京 100039 |
|
IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism |
Meng XU1( ),Dan WANG1,*( ),Zhi-yuan LI1,Yuan-fang CHEN2 |
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 2. Beijing Institute of Machinery and Equipment, Beijing 100039, China |
引用本文:
许萌,王丹,李致远,陈远方. IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 745-753, 782.
Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN. IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 745-753, 782.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.014
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I4/745
|
1 |
IKEGAMI S, TAKANO K, SAEKI N, et al Operation of a P300-based brain–computer interface by individuals with cervical spinal cord injury[J]. Clinical Neurophysiology, 2011, 122 (5): 991- 996
doi: 10.1016/j.clinph.2010.08.021
|
2 |
RICCIO A, SCHETTINI F, SIMIONE L, et al On the relationship between attention processing and P300-based brain computer interface control in amyotrophic lateral sclerosis[J]. Frontiers in Human Neuroscience, 2018, 12 (165): 1- 10
|
3 |
中国信通院. 脑机接口技术在医疗健康领域应用白皮书[EB/OL]. [2021-07-01]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202107/t20210715_380509.htm
|
4 |
FARWELL L A, DONCHIN E Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70 (6): 510- 523
doi: 10.1016/0013-4694(88)90149-6
|
5 |
黄育娇, 顾正晖 基于 P300 的交互式字符输入脑机接口系统[J]. 计算机工程与设计, 2014, 35 (4): 1385- 1389 HUANG Yu-jiao, GU Zheng-hui P300-based interactive character input brain-computer interface system[J]. Computer Engineering and Design, 2014, 35 (4): 1385- 1389
doi: 10.3969/j.issn.1000-7024.2014.04.051
|
6 |
张楠楠. 脑机接口中的视觉刺激设计与优化方法研究[D]. 长沙: 国防科技大学, 2019: 84. ZHANG Nan-nan. Research on the design and optimization method of visual stimuli in brain-computer interface [D]. Changsha: National University of Defense Technology, 2019: 84.
|
7 |
XU M, CHEN L, ZHANG L, et al A visual parallel-BCI speller based on the time–frequency coding strategy[J]. Journal of Neural Engineering, 2014, 11 (2): 026014.1- 026014.11
|
8 |
RAKOTOMAMONJY A, GUIGUE V BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller[J]. IEEE Transactions on Biomedical Engineering, 2008, 55 (3): 1147- 1154
doi: 10.1109/TBME.2008.915728
|
9 |
KRUSIENSKI D J, SELLERS E W, CABESTAING F, et al A comparison of classification techniques for the P300 speller[J]. Journal of Neural Engineering, 2006, 3 (4): 299.1- 299.13
|
10 |
CECOTTI H, GRSER A Convolutional neural networks for p300 detection with application to brain computer interfaces[J]. IEEE Transactions on Software Engineering, 2011, 33 (3): 433- 445
|
11 |
ZHANG C, KIM Y K, ESKANDARIAN A EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification[J]. Journal of Neural Engineering, 2021, 18 (4): 046014.1- 046014.16
|
12 |
AMIN S U, ALTAHERI H, MUHAMMAD G, et al. Attention based Inception model for robust EEG motor imagery classification [C]// 2021 IEEE International Instrumentation and Measurement Technology Conference. Glasgow: IEEE, 2021: 1-6.
|
13 |
LI Y, LIU Y, CUI W G, et al Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (4): 782- 794
doi: 10.1109/TNSRE.2020.2973434
|
14 |
贾子钰, 林友芳, 刘天航, 等 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57 (12): 2481- 2489 JIA Zi-yu, LIN You-fang, LIU Tian-hang, et al Motor imagery classification based on multiscale feature extraction and squeeze-excitation model[J]. Journal of Computer Research and Development, 2020, 57 (12): 2481- 2489
doi: 10.7544/issn1000-1239.2020.20200723
|
15 |
RIVET B, SOULOUMIAC A, ATTINA V, et al xDAWN algorithm to enhance evoked potentials: application to brain–computer interface[J]. IEEE Transactions on Biomedical Engineering, 2009, 56 (8): 2035- 2043
doi: 10.1109/TBME.2009.2012869
|
16 |
XIAO X, XU M, JIN J, et al Discriminative canonical pattern matching for single-trial classification of ERP components[J]. IEEE Transactions on Biomedical Engineering, 2019, 67 (8): 2266- 2275
|
17 |
LIU M, WU W, GU Z, et al Deep learning based on batch normalization for P300 signal detection[J]. Neurocomputing, 2018, 275: 288- 297
doi: 10.1016/j.neucom.2017.08.039
|
18 |
LIU X, XIE Q, LV J, et al P300 event-related potential detection using one-dimensional convolutional capsule networks[J]. Expert Systems with Applications, 2021, 174 (15): 114701.1- 114701.12
|
19 |
KUNDU S, ARI S P300 based character recognition using convolutional neural network and support vector machine[J]. Biomedical Signal Processing and Control, 2020, 55: 101645.1- 101645.7
|
20 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2016, 15 (5): 056013.1- 056013.17
|
21 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
22 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
23 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
24 |
XIAO J, LIN Q, YU T, et al. A BCI system for assisting visual fixation assessment in behavioral evaluation of patients with disorders of consciousness [C]// 2017 8th International IEEE/EMBS Conference on Neural Engineering. Shanghai: IEEE, 2017: 399-402.
|
25 |
LIU L, WU F X, WANG Y P, et al Multi-receptive-field CNN for semantic segmentation of medical images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (11): 3215- 3225
doi: 10.1109/JBHI.2020.3016306
|
26 |
WANG H, XU J, YAN R, et al A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (5): 2377- 2389
|
27 |
LUO Y, LU B L. EEG data augmentation for emotion recognition using a conditional Wasserstein GAN [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu: IEEE, 2018: 2535-2538.
|
28 |
LEE T, KIM M, KIM S P. Data augmentation effects using borderline-SMOTE on classification of a P300-based BCI [C]// 2020 8th International Winter Conference on Brain-Computer Interface. Gangwon: IEEE, 2020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|