| 计算机技术、信息与电子工程 | 
									
										
		  							 | 
          							
		  									  								 
		  									  							    
		  									  								 
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 旋转框定位的多尺度再生物品目标检测算法 | 
  					 
  					  										
						董红召( ),方浩杰,张楠 | 
					 
															
					| 浙江工业大学 智能交通系统联合研究所,浙江 杭州 310014 | 
					 
										
						 | 
					 
   										
    					| Multi-scale object detection algorithm for recycled objects based on rotating block positioning | 
  					 
  					  					  					
						Hong-zhao DONG( ),Hao-jie FANG,Nan ZHANG | 
					 
															
						| ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China | 
					   
									 
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | 
																 
															     康庄, 杨杰, 郭濠奇 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报:工学版, 2020, 54 (7): 1272- 1280  KANG Zhuang, YANG Jie, GUO Hao-qi Automatic garbage classification system based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1272- 1280 
															     																 | 
																	  
																																
																| 2 | 
																 
															     谢先武, 熊禾根, 陶永, 等 一种面向机器人分拣的杂乱工件视觉检测识别方法[J]. 高技术通讯, 2018, 28 (4): 344- 353  XIE Xian-wu, XIONG He-gen, TAO Yong, et al A method for visual detection and recognition of clutter workpieces for robot sorting[J]. Chinese High Technology Letters, 2018, 28 (4): 344- 353 
															     															     	 
															     																     		doi: 10.3772/j.issn.1002-0470.2018.04.008
															     																     																     																 | 
																	  
																																
																| 3 | 
																 
															     YANG Z, LI D Wasnet: a neural network-based garbage collection management system[J]. IEEE Access, 2020, 8: 103984- 103993 
															     															     	 
															     																     		doi: 10.1109/ACCESS.2020.2999678
															     																     																     																 | 
																	  
																																
																| 4 | 
																 
															     陈智超, 焦海宁, 杨杰, 等 基于改进 MobileNet v2 的垃圾图像分类算法[J]. 浙江大学学报:工学版, 2021, 55 (8): 1490- 1499  CHEN Zhi-chao, JIAO Hai-ning, YANG Jie, et al Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1490- 1499 
															     																 | 
																	  
																																
																| 5 | 
																 
															     袁建野, 南新元, 蔡鑫, 等 基于轻量级残差网路的垃圾图片分类方法[J]. 环境工程, 2021, 39 (2): 6  YUAN Jian-ye, NAN Xin-yuan, CAI Xin, et al Garbage image classification by lightweight residual network[J]. Environmental Engineering, 2021, 39 (2): 6 
															     																 | 
																	  
																																
																| 6 | 
																 
															     NIE Z, DUAN W, LI X Domestic garbage recognition and detection based on Faster R-CNN[J]. Journal of Physics: Conference Series, 2021, 1738 (1): 012089 
															     															     	 
															     																     		doi: 10.1088/1742-6596/1738/1/012089
															     																     																     																 | 
																	  
																																
																| 7 | 
																 
															     LIANG B, WANG Y, WANG Y, et al Garbage sorting system based on composite layer cnn and multi-robots[J]. Journal of Physics: Conference Series, 2020, 1634 (1): 012083 
															     															     	 
															     																     		doi: 10.1088/1742-6596/1634/1/012083
															     																     																     																 | 
																	  
																																
																| 8 | 
																 
															     周滢慜. 基于机器视觉的生活垃圾智能分拣系统的设计与实现 [D]. 哈尔滨: 哈尔滨工业大学, 2018. ZHOU Ying-min. Design and implementation of visionbased Sorting system for solid waste [D]. Harbin: Harbin Institute of Technology, 2018.
															     																 | 
																	  
																																
																| 9 | 
																 
															     REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
															     																 | 
																	  
																																
																| 10 | 
																 
															     LIU K, TANG H, HE S, et al. Performance validation of Yolo variants for object detection [C]// Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing. Vancouver: [s. n. ], 2021: 239-243.
															     																 | 
																	  
																																
																| 11 | 
																 
															     朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究 [EB/OL]. [2021-10-01]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.C200261. ZHU Yu, FANG Guan-shou, ZHENG Bing-bing, et al. Research on detection method of refined rotated boxes in remote sensing [EB/OL]. [2021-10-01]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.C200261.
															     																 | 
																	  
																																
																| 12 | 
																 
															     DING J, XUE N, LONG Y, et al. Learning roi transformer for oriented object detection in aerial images [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Bench: IEEE, 2019: 2849-2858.
															     																 | 
																	  
																																
																| 13 | 
																 
															     XU Y, FU M, WANG Q, et al Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (4): 1452- 1459
															     																 | 
																	  
																																
																| 14 | 
																 
															     CHEN Y , DING W , LI H , et al. Arbitrary-oriented dense object detection in remote sensing imagery [C]// 2018 IEEE 9th International Conference on Software Engineering and Service Science. Beijing: IEEE, 2019: 436-440.
															     																 | 
																	  
																																
																| 15 | 
																 
															     YANG X, YANG J, YAN J, et al. Scrdet: towards more robust detection for small, cluttered and rotated objects [C]// 2019 IEEE/CVF International Conference on Computer Vision. South Korea: IEEE, 2019: 8232-8241.
															     																 | 
																	  
																																
																| 16 | 
																 
															     YANG X, LIU Q, YAN J, et al. R3det: refined single-stage detector with feature refinement for rotating object [EB/OL]. [2021-10-01]. https://arxiv.org/abs/1908.05612.
															     																 | 
																	  
																																
																| 17 | 
																 
															     YANG X, YAN J, HE T. On the arbitrary-oriented object detection: classification based approaches revisited [EB/OL]. [2021-10-01]. https://arxiv.org/abs/2003.05597v3.
															     																 | 
																	  
																																
																| 18 | 
																 
															     ZHU X, LIU S, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2778-2788.
															     																 | 
																	  
																																
																| 19 | 
																 
															     FU L, GU W, LI W, et al Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs[J]. Defence Technology, 2021, 17 (4): 1531- 1541 
															     															     	 
															     																     		doi: 10.1016/j.dt.2020.09.018
															     																     																     																 | 
																	  
																																
																| 20 | 
																 
															     VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems. Long Beach: [s. n], 2017: 5998-6008.
															     																 | 
																	  
																																
																| 21 | 
																 
															     鲁博, 瞿绍军 融合BiFPN和改进Yolov3-tiny网络的航拍图像车辆检测方法[J]. 小型微型计算机系统, 2021, 42 (8): 1694- 1698  LU bo, QU Shao-jun Vehicle detection method in aerial images based on BiFPN and improved Yolov3-tiny Network[J]. Journal of Chinese Computer Systems, 2021, 42 (8): 1694- 1698 
															     															     	 
															     																     		doi: 10.3969/j.issn.1000-1220.2021.08.020
															     																     																     																 | 
																	  
																																
																| 22 | 
																 
															     LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2117-2125.
															     																 | 
																	  
																																
																| 23 | 
																 
															     LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
															     																 | 
																	  
																																
																| 24 | 
																 
															     GHIASI G, LIN T Y, LE Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7036-7045.
															     																 | 
																	  
																																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |