计算机技术、信息与电子工程 |
|
|
|
|
旋转框定位的多尺度再生物品目标检测算法 |
董红召( ),方浩杰,张楠 |
浙江工业大学 智能交通系统联合研究所,浙江 杭州 310014 |
|
Multi-scale object detection algorithm for recycled objects based on rotating block positioning |
Hong-zhao DONG( ),Hao-jie FANG,Nan ZHANG |
ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China |
1 |
康庄, 杨杰, 郭濠奇 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报:工学版, 2020, 54 (7): 1272- 1280 KANG Zhuang, YANG Jie, GUO Hao-qi Automatic garbage classification system based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1272- 1280
|
2 |
谢先武, 熊禾根, 陶永, 等 一种面向机器人分拣的杂乱工件视觉检测识别方法[J]. 高技术通讯, 2018, 28 (4): 344- 353 XIE Xian-wu, XIONG He-gen, TAO Yong, et al A method for visual detection and recognition of clutter workpieces for robot sorting[J]. Chinese High Technology Letters, 2018, 28 (4): 344- 353
doi: 10.3772/j.issn.1002-0470.2018.04.008
|
3 |
YANG Z, LI D Wasnet: a neural network-based garbage collection management system[J]. IEEE Access, 2020, 8: 103984- 103993
doi: 10.1109/ACCESS.2020.2999678
|
4 |
陈智超, 焦海宁, 杨杰, 等 基于改进 MobileNet v2 的垃圾图像分类算法[J]. 浙江大学学报:工学版, 2021, 55 (8): 1490- 1499 CHEN Zhi-chao, JIAO Hai-ning, YANG Jie, et al Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1490- 1499
|
5 |
袁建野, 南新元, 蔡鑫, 等 基于轻量级残差网路的垃圾图片分类方法[J]. 环境工程, 2021, 39 (2): 6 YUAN Jian-ye, NAN Xin-yuan, CAI Xin, et al Garbage image classification by lightweight residual network[J]. Environmental Engineering, 2021, 39 (2): 6
|
6 |
NIE Z, DUAN W, LI X Domestic garbage recognition and detection based on Faster R-CNN[J]. Journal of Physics: Conference Series, 2021, 1738 (1): 012089
doi: 10.1088/1742-6596/1738/1/012089
|
7 |
LIANG B, WANG Y, WANG Y, et al Garbage sorting system based on composite layer cnn and multi-robots[J]. Journal of Physics: Conference Series, 2020, 1634 (1): 012083
doi: 10.1088/1742-6596/1634/1/012083
|
8 |
周滢慜. 基于机器视觉的生活垃圾智能分拣系统的设计与实现 [D]. 哈尔滨: 哈尔滨工业大学, 2018. ZHOU Ying-min. Design and implementation of visionbased Sorting system for solid waste [D]. Harbin: Harbin Institute of Technology, 2018.
|
9 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
10 |
LIU K, TANG H, HE S, et al. Performance validation of Yolo variants for object detection [C]// Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing. Vancouver: [s. n. ], 2021: 239-243.
|
11 |
朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究 [EB/OL]. [2021-10-01]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.C200261. ZHU Yu, FANG Guan-shou, ZHENG Bing-bing, et al. Research on detection method of refined rotated boxes in remote sensing [EB/OL]. [2021-10-01]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.C200261.
|
12 |
DING J, XUE N, LONG Y, et al. Learning roi transformer for oriented object detection in aerial images [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Bench: IEEE, 2019: 2849-2858.
|
13 |
XU Y, FU M, WANG Q, et al Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (4): 1452- 1459
|
14 |
CHEN Y , DING W , LI H , et al. Arbitrary-oriented dense object detection in remote sensing imagery [C]// 2018 IEEE 9th International Conference on Software Engineering and Service Science. Beijing: IEEE, 2019: 436-440.
|
15 |
YANG X, YANG J, YAN J, et al. Scrdet: towards more robust detection for small, cluttered and rotated objects [C]// 2019 IEEE/CVF International Conference on Computer Vision. South Korea: IEEE, 2019: 8232-8241.
|
16 |
YANG X, LIU Q, YAN J, et al. R3det: refined single-stage detector with feature refinement for rotating object [EB/OL]. [2021-10-01]. https://arxiv.org/abs/1908.05612.
|
17 |
YANG X, YAN J, HE T. On the arbitrary-oriented object detection: classification based approaches revisited [EB/OL]. [2021-10-01]. https://arxiv.org/abs/2003.05597v3.
|
18 |
ZHU X, LIU S, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2778-2788.
|
19 |
FU L, GU W, LI W, et al Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs[J]. Defence Technology, 2021, 17 (4): 1531- 1541
doi: 10.1016/j.dt.2020.09.018
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems. Long Beach: [s. n], 2017: 5998-6008.
|
21 |
鲁博, 瞿绍军 融合BiFPN和改进Yolov3-tiny网络的航拍图像车辆检测方法[J]. 小型微型计算机系统, 2021, 42 (8): 1694- 1698 LU bo, QU Shao-jun Vehicle detection method in aerial images based on BiFPN and improved Yolov3-tiny Network[J]. Journal of Chinese Computer Systems, 2021, 42 (8): 1694- 1698
doi: 10.3969/j.issn.1000-1220.2021.08.020
|
22 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2117-2125.
|
23 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
24 |
GHIASI G, LIN T Y, LE Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7036-7045.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|