计算机与控制工程 |
|
|
|
|
基于改进DenseNet的水果小目标检测 |
徐利锋(),黄海帆,丁维龙,范玉雷 |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
Detection of small fruit target based on improved DenseNet |
Li-feng XU(),Hai-fan HUANG,Wei-long DING,Yu-lei FAN |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
Li-feng XU,Hai-fan HUANG,Wei-long DING,Yu-lei FAN. Detection of small fruit target based on improved DenseNet. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 377-385.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.018
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I2/377
|
1 |
NUSKE S, ACHAR S, BATES T, et al. Yield estimation in vineyards by visual grape detection [C]// 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 2352-2358.
|
2 |
PAYNE A B, WALSH K B, SUBEDI P P, et al Estimation of mango crop yield using image analysis: segmentation method[J]. Computers and Electronics in Agriculture, 2013, 91: 57- 64
doi: 10.1016/j.compag.2012.11.009
|
3 |
INKYU S, ZONGYUAN G, FERAS D, et al Deep fruits: a fruit detection system using deep neural networks[J]. Sensors, 2016, 16 (8): 1222
doi: 10.3390/s16081222
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158
|
5 |
EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338
doi: 10.1007/s11263-009-0275-4
|
6 |
UIJLINGS J R R, SANDE K E A V D, GEVERS T, et al Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171
doi: 10.1007/s11263-013-0620-5
|
7 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
|
8 |
BARGOTI S, UNDERWOOD J. Deep fruit detection in orchards [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3626-3633.
|
9 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
10 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J/OL]. [2020-08-16]. https://arxiv.org/abs/1409.1556.
|
11 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
12 |
曾平平, 李林升 基于卷积神经网络的水果图像分类识别研究[J]. 机械设计与研究, 2019, 35 (1): 23- 26 ZENG Ping-ping, LI Lin-sheng Classification and recognition of common fruit images based on convolutional neural network[J]. Machine Design and Research, 2019, 35 (1): 23- 26
|
13 |
薛月菊, 黄宁, 涂淑琴, 等 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34 (7): 173- 179 XUE Yue-ju, HUANG Ning, TU Shu-qin, et al Immature mango detection based on improved YOLOv2[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (7): 173- 179
doi: 10.11975/j.issn.1002-6819.2018.07.022
|
14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
|
15 |
WAN S, GOUDOS S Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Computer Networks, 2020, 168: 107036
doi: 10.1016/j.comnet.2019.107036
|
16 |
MAI X, ZHANG H, JIA X, et al Faster R-CNN with classifier fusion for automatic detection of small fruits[J]. IEEE Transactions on Automation Science and Engineering, 2020, PP (99): 1- 15
|
17 |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks [C]// Advances in Neural Information Processing Systems. Montreal: Curran Associates, 2015: 2377-2385.
|
18 |
LARSSON G, MAIRE M, SHAKHNAROVICH G. Fractalnet: ultra-deep neural networks without residuals [J/OL]. [2020-08-16]. https://arxiv.org/abs/1605.07648.
|
19 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
20 |
LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
21 |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression [C]// 18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006, 3: 850-855.
|
22 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5561-5569.
|
23 |
MATHIAS M, BENENSON R, TIMOFTE R, et al. Handling occlusions with franken-classifiers [C]// Proceedings of the IEEE International Conference on Computer Vision. Sydeny: IEEE, 2013: 1505-1512.
|
24 |
NING C, MENGLU L, HAO Y, et al. Survey of pedestrian detection with occlusion [J/OL]. Complex and Intelligent Systems. https://doi.org/10.1007/s40747-020-00206-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|