Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1727-1735    DOI: 10.3785/j.issn.1008-973X.2020.09.008
计算机技术     
多尺度SE-Xception服装图像分类
陈巧红(),陈翊,李文书,贾宇波
浙江理工大学 信息学院,浙江 杭州 310018
Clothing image classification based on multi-scale SE-Xception
Qiao-hong CHEN(),YI CHEN,Wen-shu Li,Yu-bo JIA
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(971 KB)   HTML
摘要:

应用当前较新颖且分类性能靠前的卷积神经网络Xception作为基础网络结构,尝试采用多尺度的深度可分离卷积来提升模型特征信息的丰富度,在模型中嵌入SE-Net模块增强有用特征通道,减弱无用特征通道. 实验结果表明:提出的多尺度SE-Xception模型在2种噪声程度不同的服装数据集中均取得不错表现;ACS数据集的平均分类准确率为78.34%,分别高于VGG-16、ResNet-50和Xception模型8.52%、4.81%、3.69%;验证了多尺度SE-Xception模型具有更好的特征提取能力,能够提取到更多的服装信息,从而提高服装图像分类效果,一定程度上解决了特征尺度单一、信息丰富度低的问题.

关键词: 服装图像分类多尺度SE-Xception图像识别深度学习机器学习卷积神经网络(CNN)    
Abstract:

The current newer and better convolutional neural network Xception was used as the foundation network structures. Multi-scale depth separable convolution was employed to improve the richness of model feature information. The SE-Net model was embedded in the model to enhance the useful feature channels and weaken the useless feature channels. The experimental results show that the multi-scale SE-Xception model achieved good performance in two different noise clothing datasets. The average classification accuracy of ACS dataset was 78.34%, which was higher than VGG-16, ResNet-50 and Xception models by 8.52%, 4.81% and 3.69%, respectively. Therefore, it’s verified that the multi-scale SE-Xception model has better ability to extract features, can obtain more clothing information, and thus improve the clothing image classification effect. To some extent, a multi-scale SE-Xception network is conducive to solve the single feature scale and low information richness problems.

Key words: clothing image classification    multi-scale SE-Xception    image identification    deep learning    machine learning    convolutional neural network (CNN)
收稿日期: 2019-08-14 出版日期: 2020-09-22
CLC:  TP 181  
基金资助: 国家自然科学基金资助项目(51775513)
作者简介: 陈巧红(1978—),女,副教授,从事计算机辅助设计及机器学习技术研究. orcid.org/0000-0003-0595-341X. E-mail: chen_lisa@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈巧红
陈翊
李文书
贾宇波

引用本文:

陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.

Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.008        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1727

图 1  Xception模型的主要网络模块示意图
图 2  深度可分离卷积的结构图
图 3  SE-Net模块流程图
图 4  多尺度深度可分离卷积的结构图
层级序号 残差链接 循环 卷积操作 输出尺寸
Conv_1 ? ? Conv 32,3×3,stride = 2 111×111×32
Conv_2 ? ? Conv 64,3×3 109×109×64
Conv_3 Conv 1×1,stride = 2 ? 多尺度深度可分离卷积 128
多尺度深度可分离卷积 128
最大池化 3×3,stride = 2,padding=1
55×55×128
Conv_4 Conv 1×1,stride = 2 ? 多尺度深度可分离卷积 256
多尺度深度可分离卷积 256
最大池化 3×3,stride = 2,padding=1
28×28×256
Conv_5 Conv 1×1,stride = 2 ? 多尺度深度可分离卷积 728
多尺度深度可分离卷积 728
最大池化 3×3,stride = 2,padding=1
14×14×728
Conv_6_x 直连 ×8 多尺度深度可分离卷积 728
多尺度深度可分离卷积 728
多尺度深度可分离卷积 728
14×14×728
Conv_7 Conv 1×1,stride = 2 ? 多尺度深度可分离卷积 728
多尺度深度可分离卷积 1024
最大池化 3×3,stride = 2,padding=1
7×7×1 024
Conv_8 ? ? 多尺度深度可分离卷积 1536
SE-Net模块
7×7×1 024
Conv_9 ? ? 多尺度深度可分离卷积 2048
SE-Net模块
7×7×2 048
GAP_10 ? ? 全局均值池化 1×1×2 048
FC_11 ? ? 全连接层 1×1×7
表 1  多尺度SE-Xception模型的整体框架
图 5  ACS数据集与DeepFashion数据集示例图
图 6  不同模型在ACS数据集上的损失变化曲线对比
图 7  不同模型在ACS数据集上的准确率变化曲线对比
卷积核组合 R/%
$3 \times 3$ 74.65
$3 \times 3$$5 \times 5$ 76.12
$1 \times 1$$3 \times 3$,最大池化 75.70
$1 \times 1$$5 \times 5$,最大池化 75.58
$1 \times 1$$3 \times 3$$5 \times 5$,最大池化 78.34
表 2  不同组合的卷积核实验结果对比
CNN模型 RDF RACS RDEC
Xception_Net 78.68 74.65 4.03
Multi_SE_Xception_Net 80.14 78.34 1.80
表 3  Xception模型与多尺度SE-Xception模型在不同数据集上的实验结果对比
CNN模型 R/%
VGG16_Net 69.82
Resnet50_Net 73.53
Xception_Net 74.65
Multi_Xception_Net 77.58
Multi_SE_Xception_Net 78.34
表 4  不同模型在ACS数据集上的平均分类准确率对比
1 中国电子商务研究中心. 2015—2016年度中国服装电商行业报告[R/OL]. (2016-12-26)[2018-12-17]. http://www.100ec.cn/zt/fzyxbg/.
2 OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions [C] // Proceedings of 12th International Conference on Pattern Recognition. Jerusalem: IEEE, 1994: 582-585.
3 LOWE D G Distinctive image features from scale-invari-ant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
doi: 10.1023/B:VISI.0000029664.99615.94
4 DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C] // Computer Vision and Pattern Re-cognition. San Diego: IEEE, 2005: 886-893.
5 BOSSARD L, DANTONE M, LEISTNER C, et al. Apparel classification with style [C] // Asian Conference on Com-puter Vision. Daejeon: Springer, 2012: 321-335.
6 HUO P, WANG Y, LIU Q. A part-based and feature fus-ion method for clothing classification [C] // Pacific Rim Conference on Multimedia. Xi’an: Springer, 2016: 231-241.
7 SURAKARIN W, CHONGSTITVATANA P. Predicting types of clothing using SURF and LDP based on bag of features [C] // International Conference on Electrical Engineering/Electronics. Hua Hin: IEEE, 2015: 1-5.
8 吴苗苗, 刘骊, 付晓东, 等 款式特征描述符的服装图像细粒度分类方法[J]. 计算机辅助设计与图形学学报, 2019, 31 (5): 780- 791
WU Miao-miao, LIU Li, FU Xiao-dong, et al Fine-grained clothing image classification by style feature description[J]. Journal of Computer-aided Design and Computer Graphics, 2019, 31 (5): 780- 791
doi: 10.3724/SP.J.1089.2019.17380
9 LIU Z, LUO P, QIU S, et al. DeepFashion: Powering ro-bust clothes recognition and retrieval with rich annotations [C] // 2016 the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1096-1104.
10 DONG C Y, SHI Y Q, TAO R. Convolutional neural ne-tworks for clothing image style recognition [C] // 2018 International Conference on Computational, Modeling, Simulation and Mathematical Statistics. Pennsylvania: CMSMS, 2018: 592-597.
11 包青平, 孙志锋 基于度量学习的服装图像分类和检索[J]. 计算机应用与软件, 2017, 34 (4): 255- 259
BAO Qing-ping, SUN Zhi-feng Clothing image classification and retrieval based on metric learning[J]. Computer Applications and Software, 2017, 34 (4): 255- 259
doi: 10.3969/j.issn.1000-386x.2017.04.043
12 张振焕, 周彩兰, 梁媛 基于残差的优化卷积神经网络服装分类算法[J]. 计算机工程与科学, 2018, 40 (2): 354- 360
ZHANG Zhen-huan, ZHOU Cai-lan, LIANG Yuan An optimized clothing classification algorithm based on residual convolutional neural network[J]. Computer Engineering and Science, 2018, 40 (2): 354- 360
doi: 10.3969/j.issn.1007-130X.2018.02.023
13 厉智, 孙玉宝, 王枫, 等 基于深度卷积神经网络的服装图像分类检索算法[J]. 计算机工程, 2016, 42 (11): 309- 315
LI Zhi, SUN Yu-bao, WANG Feng, et al Clothing image classification and retrieval algorithm based on deep convolutional neural network[J]. Computer Engineering, 2016, 42 (11): 309- 315
doi: 10.3969/j.issn.1000-3428.2016.11.053
14 KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C] // Advances in Neural Information Processing Systems 25 (NIPS 2012). Nevada: NIPS, 2012: 1097-1105.
15 SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2018-12-17]. https://arxiv.org/abs/1409.1556.
16 SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] // 2015 the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
17 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // 2016 the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
18 CHOLLET F. Xception: deep learning with depthwise separable convolutions [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1251-1258.
[1] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[2] 王虹力,郭斌,刘思聪,刘佳琪,仵允港,於志文. 边端融合的终端情境自适应深度感知模型[J]. 浙江大学学报(工学版), 2021, 55(4): 626-638.
[3] 张腾,蒋鑫龙,陈益强,陈前,米涛免,陈彪. 基于腕部姿态的帕金森病用药后开-关期检测[J]. 浙江大学学报(工学版), 2021, 55(4): 639-647.
[4] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[5] 郑英杰,吴松荣,韦若禹,涂振威,廖进,刘东. 基于目标图像FCM算法的地铁定位点匹配及误报排除方法[J]. 浙江大学学报(工学版), 2021, 55(3): 586-593.
[6] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[7] 徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
[8] 许豪灿,李基拓,陆国栋. 由LeNet-5从单张着装图像重建三维人体[J]. 浙江大学学报(工学版), 2021, 55(1): 153-161.
[9] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[10] 郑浦,白宏阳,李伟,郭宏伟. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784.
[11] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[12] 张彦楠,黄小红,马严,丛群. 基于深度学习的录音文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1264-1271.
[13] 明涛,王丹,郭继昌,李锵. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7): 1289-1297.
[14] 闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
[15] 杨萍,王丹,康子健,李童,付利华,余悦任. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.