计算机与控制工程 |
|
|
|
|
基于合群度-隶属度噪声检测及动态特征选择的改进AdaBoost算法 |
王友卫1( ),凤丽洲2,*( ) |
1. 中央财经大学 信息学院,北京 100026 2. 天津财经大学 统计学院,天津 300222 |
|
Improved AdaBoost algorithm using group degree and membership degree based noise detection and dynamic feature selection |
You-wei WANG1( ),Li-zhou FENG2,*( ) |
1. School of Information, Central University of Finance and Economics, Beijing 100081, China 2. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China |
1 |
刘金平, 何捷舟, 马天雨, 等 基于KELM选择性集成的复杂网络环境入侵检测[J]. 电子学报, 2019, 47 (5): 96- 104 LIU Jin-ping, HE Jie-zhou, MA Tian-yu, et al Selective ensemble of KELM-based complex network intrusion detection[J]. Acta Electronica Sinica, 2019, 47 (5): 96- 104
|
2 |
GALAR M, FERNANDEZ A, BARRENECHEA E, et al A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches[J]. IEEE Transactions on Systems Man & Cybernetics Part C Applications & Reviews, 2012, 42 (4): 463- 484
|
3 |
FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm [C]// Proceedings of the 13th International Conference on Machine Learning. Bari: ACM, 1996.
|
4 |
FREUND Y, SCHAPIRE R E A decision-theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1): 119- 139
doi: 10.1006/jcss.1997.1504
|
5 |
SCHAPIRER E, SINGER Y Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37 (3): 297- 336
doi: 10.1023/A:1007614523901
|
6 |
ZHU J, ZOU H, ROSSET S, et al Multi-class AdaBoost[J]. Statistics and its Interface, 2009, 2 (3): 349- 360
doi: 10.4310/SII.2009.v2.n3.a8
|
7 |
杨新武, 马壮, 袁顺 基于弱分类器调整的多分类AdaBoost算法[J]. 电子与信息学报, 2016, 38 (2): 373- 380 YANG Xin-wu, MA Zhuang, YUAN Shun Multi-class AdaBoost algorithm based on the adjusted weak classifier[J]. Journal of Electronics and Information Technology, 2016, 38 (2): 373- 380
|
8 |
楼晓俊, 孙雨轩, 刘海涛 聚类边界过采样不平衡数据分类方法[J]. 浙江大学学报: 工学版, 2013, 47 (6): 944- 950 LOU Xiao-jun, SUN Yu-xuan, LIU Hai-tao Clustering boundary over-sampling classification method for imbalanced data sets[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (6): 944- 950
|
9 |
CAO J, KWONG S, WANG R A noise-detection based AdaBoost algorithm for mislabeled data[J]. Pattern Recognition, 2012, 45 (1): 4451- 4465
|
10 |
张子祥, 陈优广 基于样本噪声检测的AdaBoost算法改进[J]. 计算机系统应用, 2017, 26 (12): 186- 190 ZHANG Zi-xiang, CHEN You-guang Improvement of AdaBoost algorithm based on sample noise detection[J]. Computer Systems and Applications, 2017, 26 (12): 186- 190
|
11 |
YANG P, WANG D, WEI Z, et al An outlier detection approach based on improved self-organizing feature map clustering algorithm[J]. IEEE Access, 2019, 7: 115914- 115925
doi: 10.1109/ACCESS.2019.2922004
|
12 |
姚旭, 王晓丹, 张玉玺, 等 基于随机子空间和AdaBoost的自适应集成方法[J]. 电子学报, 2013, 41 (4): 810- 814 YAO Xu, WANG Xiao-dan, ZHANG Yu-xi, et al A self-adaption ensemble algorithm based on random subspace and AdaBoost[J]. Acta Electronica Sinica, 2013, 41 (4): 810- 814
doi: 10.3969/j.issn.0372-2112.2013.04.031
|
13 |
曹莹, 刘家辰, 苗启广, 等 AdaBoost恶意程序行为检测新算法[J]. 西安电子科技大学学报, 2013, 40 (6): 116- 124 CAO Ying, LIU Jia-chen, MIAO Qi-guang, et al Improved behavior-based malware detection algorithm with AdaBoost[J]. Journal of Xidian University: Natural Science, 2013, 40 (6): 116- 124
|
14 |
SUN B, CHEN S, WANG J, et al A robust multi-class AdaBoost algorithm for mislabeled noisy data[J]. Knowledge-Based Systems, 2016, 102 (5): 87- 102
|
15 |
YOUSEFI M, YOUSEFI M, FERREIRA R P M, et al Chaotic genetic algorithm and AdaBoost ensemble metamodeling approach for optimum resource planning in emergency departments[J]. Artificial Intelligence in Medicine, 2018, 84: 23- 33
doi: 10.1016/j.artmed.2017.10.002
|
16 |
CHEN Y B, DOU P, YANG X J Improving land use/cover classification witha multiple classifier system using AdaBoost integration technique[J]. Remote Sensing, 2017, 9 (10): 1055- 1075
doi: 10.3390/rs9101055
|
17 |
LIN H T, LIN C J, WENG R C A note on Platt’s probabilistic outputs for support vector machines[J]. Machine Learning, 2007, 68 (3): 267- 276
doi: 10.1007/s10994-007-5018-6
|
18 |
刘宏伟, 黄静 基于朴素贝叶斯算法的垃圾邮件网关[J]. 微计算机信息, 2006, 22 (18): 73- 75 LIU Hong-wei, HUANG Jing Spam filtering gateway based on NB algorithm[J]. Microcomputer Information, 2006, 22 (18): 73- 75
doi: 10.3969/j.issn.1008-0570.2006.18.025
|
19 |
YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization [C]// Proceedings of the 14th International Conference on Machine Learning. Nashville: ACM, 1997.
|
20 |
WANG Y W, FENG L Z, ZHU J M Novel artificial bee colony based feature selection for filtering redundant information[J]. Applied Intelligence, 2017, 48 (3): 868- 885
|
21 |
BOMMERT A, SUN X, BISCHL B, et al Benchmark for filter methods for feature selection in high-dimensional classification data[J]. Computational Statistics and Data Analysis, 2019, 143: 106839
|
22 |
YANG J, LIU Y, ZHU X, et al A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization[J]. Information Processing and Management, 2012, 48 (4): 741- 754
doi: 10.1016/j.ipm.2011.12.005
|
23 |
DADANEH B Z, MARKID H Y, ZAKEROLHOSSEINI A Unsupervised probabilistic feature selection using ant colony optimization[J]. Expert Systems with Applications, 2016, 53: 27- 42
doi: 10.1016/j.eswa.2016.01.021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|