计算机与控制工程 |
|
|
|
|
适用于目标检测的上下文感知知识蒸馏网络 |
褚晶辉( ),史李栋,井佩光,吕卫*( ) |
天津大学 电气自动化与信息工程学院,天津 300072 |
|
Context-aware knowledge distillation network for object detection |
Jing-hui CHU( ),Li-dong SHI,Pei-guang JING,Wei LV*( ) |
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
引用本文:
褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.009
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/503
|
1 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
2 |
张彦楠, 黄小红, 马严, 等 基于深度学习的录音文本分类方法[J]. 浙江大学学报:工学版, 2020, 54 (7): 1264- 1271 ZHANG Yan-nan, HUANG Xiao-hong, MA Yan, et al Method with recording text classification based on deep learning[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1264- 1271
|
3 |
洪炎佳, 孟铁豹, 黎浩江, 等 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报:工学版, 2020, 54 (3): 566- 573 HONG Yan-jia, MENG Tie-bao, LI Hao-jiang, et al Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion[J]. Journal of Zhejiang University:Engineering Science, 2020, 54 (3): 566- 573
|
4 |
TIAN Y, KRISHNAN D, ISOLA P. Contrastive representation distillation [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/1910.10699v2.pdf.
|
5 |
HINTON G, VINVALS O, DEAN J Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14 (7): 38- 39
|
6 |
CHEN G, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation [C]// Proceedings of the Annual Conference on Neural Information Processing Systems. Long Beach: [s. n.], 2017: 742–751.
|
7 |
TAN X, REN Y, HE D, et al. Multilingual neural machine translation with knowledge distillation [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/1902.10461v3.pdf.
|
8 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/1409.1556.pdf.
|
9 |
ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets [C]// Proceedings of the International Conference on Learning Representations. San Diego: [s.n.], 2015: 1–13.
|
10 |
WANG T, YUAN L, ZHANG X, et al. Distilling object detectors with fine-grained feature imitation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4928–4937.
|
11 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/1506.01497.pdf.
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
13 |
JIE H, LI S, GANG S, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
14 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles: IEEE, 2020: 11531–11539.
|
15 |
HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation [C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 1013-1021.
|
16 |
EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136
doi: 10.1007/s11263-014-0733-5
|
17 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
|
18 |
MAO J, XIAO T, JIANG Y, et al. What can help pedestrian detection? [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3127-3136.
|
19 |
SUN R, TANG F, ZHANG X, et al. Distilling object detectors with task adaptive regularization [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/2006.13108.pdf.
|
20 |
ZHENG Z, YE R, WANG P, et al. Localization distillation for object detection [EB/OL]. [2021-09-07]. https://arxiv.org/pdf/2102.12252v3.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|