计算机与控制工程 |
|
|
|
|
整体特征通道识别的自适应孪生网络跟踪算法 |
宋鹏(),杨德东*(),李畅,郭畅 |
河北工业大学 人工智能与数据科学学院,天津 300130 |
|
An adaptive siamese network tracking algorithm based on global feature channel recognition |
Peng SONG(),De-dong YANG*(),Chang LI,Chang GUO |
School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China |
引用本文:
宋鹏,杨德东,李畅,郭畅. 整体特征通道识别的自适应孪生网络跟踪算法[J]. 浙江大学学报(工学版), 2021, 55(5): 966-975.
Peng SONG,De-dong YANG,Chang LI,Chang GUO. An adaptive siamese network tracking algorithm based on global feature channel recognition. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 966-975.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.017
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I5/966
|
1 |
TANG S Y, ANDRILUKA M, ANDRES B, et al. Multiple people tracking by lifted multicut and person re-identification [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3539-3548.
|
2 |
LEE K H, HWANG J N On-road pedestrian tracking across multiple driving recorders[J]. IEEE Transactions on Multimedia, 2015, 17 (9): 1429- 1438
doi: 10.1109/TMM.2015.2455418
|
3 |
TEUTSCH M, KRUGER W. Detection, segmentation, and tracking of moving objects in uav videos [C]// 2012 IEEE Ninth International Conference on Advanced Video and Signal-based Surveillance. Beijing: IEEE, 2012: 313-318.
|
4 |
SMEULDERS A W M, CHU D M, CUCCHIARA R, et al Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (7): 1442- 1468
doi: 10.1109/TPAMI.2013.230
|
5 |
QI Y, ZHANG S, LEI Q, et al. Hedged deep tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4303-4311.
|
6 |
DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Convolutional features for correlation filter based visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 58-66.
|
7 |
DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking [C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 472-488.
|
8 |
DANELLJAN M, BHAT G, KHAN F S, et al. Eco: efficient convolution operators for tracking [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 21-26.
|
9 |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking [C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 850-865.
|
10 |
VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5000-5008.
|
11 |
LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
|
12 |
WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4854-4863.
|
13 |
WU Y, LIM J, YANG M H Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848
doi: 10.1109/TPAMI.2014.2388226
|
14 |
KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results [C]// 14th European Conference on Computer Vision. Amsterdam: Springer, 2016, 9914: 777-823.
|
15 |
ZHANG Z P, PENG H W. Deeper and wider siamese networks for real-time visual tracking [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4591-4600.
|
16 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
17 |
CAO Y, X J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 1971-1980.
|
18 |
WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4800-4808.
|
19 |
OLGA R, JIA D, HAO S, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
doi: 10.1007/s11263-015-0816-y
|
20 |
HUANG L, ZHAO X, HUANG K. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild [EB/OL]. [2020-05-18]. https://arxiv.org/abs/1810.11981.
|
21 |
GUO Q, FENG W, ZHOU C, et al. Learning dynamic siamese network for visual object tracking [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 1781-1789.
|
22 |
BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1401-1409.
|
23 |
DONG X P, SHEN J B. Triplet loss in siamese network for object tracking [C]// Proceedings of European Conference on Computer Vision. Munich: Springer, 2018: 459–474.
|
24 |
WANG M M, LIU Y, HUANG Z Y. Large margin object tracking with circulant feature maps [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4021-4029.
|
25 |
NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking [C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4293-4302.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|