Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 966-975    DOI: 10.3785/j.issn.1008-973X.2021.05.017
计算机与控制工程     
整体特征通道识别的自适应孪生网络跟踪算法
宋鹏(),杨德东*(),李畅,郭畅
河北工业大学 人工智能与数据科学学院,天津 300130
An adaptive siamese network tracking algorithm based on global feature channel recognition
Peng SONG(),De-dong YANG*(),Chang LI,Chang GUO
School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China
 全文: PDF(1281 KB)   HTML
摘要:

针对孪生网络目标跟踪算法仅使用特征提取网络提取特征,在遮挡、旋转、光照与尺度变化中容易出现跟踪失败的问题,提出整体特征通道识别的自适应孪生网络跟踪算法. 将高效的通道注意力模块引入ResNet22孪生网络中,提高特征的判别能力. 使用整体特征识别功能计算全局信息,提取更为丰富的语义信息,提高跟踪算法精度. 同时,引入自适应模板更新机制,解决遮挡与长期跟踪导致的模板退化问题. 为了验证所提方法的有效性,在OTB2015、VOT2016与VOT2018等公开数据集上进行测试,并与其他跟踪算法进行对比. 结果表明,所提算法在精确度与成功率上表现较好,在背景杂乱、旋转、光照与尺度变化等情况中表现稳定.

关键词: 目标跟踪孪生网络整体特征识别通道注意力模板更新    
Abstract:

Siamese network target tracking algorithm only uses the feature extraction network to extract features, leading to tracking failures in occlusion, rotation, illumination and scale changes. An adaptive siamese network tracking algorithm with global feature channel recognition was proposed. The efficient channel attention module is introduced into the ResNet22 siamese network to improve the ability to distinguish features. The global feature recognition function is used to calculate global information, extract richer semantic information, and improve the accuracy of tracking algorithms. At the same time, an adaptive template update mechanism is introduced to solve the problem of template degradation caused by occlusion and long-term tracking. In order to verify the effectiveness of the proposed method, the proposed method was tested on public data sets such as OTB2015、VOT2016 and VOT2018, and compared with other tracking algorithms. Results show that the proposed algorithm performs well in accuracy and success rate. The proposed method is stable under background clutter, rotation, as well as illumination and scale changes.

Key words: visual tracking    siamese network    global feature recognition    channel attention    template update
收稿日期: 2020-09-10 出版日期: 2021-06-10
CLC:  TP 391.4  
基金资助: 河北省自然科学基金资助项目(F2017202009);河北省创新能力提升计划资助项目(18961604H)
通讯作者: 杨德东     E-mail: spgoup@foxmail.com;ydd12677@163.com
作者简介: 宋鹏(1994—),男,硕士生,从事深度学习、目标跟踪研究. orcid.org/0000-0002-1380-7861. E-mail: spgoup@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋鹏
杨德东
李畅
郭畅

引用本文:

宋鹏,杨德东,李畅,郭畅. 整体特征通道识别的自适应孪生网络跟踪算法[J]. 浙江大学学报(工学版), 2021, 55(5): 966-975.

Peng SONG,De-dong YANG,Chang LI,Chang GUO. An adaptive siamese network tracking algorithm based on global feature channel recognition. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 966-975.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.017        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/966

图 1  孪生网络结构图
图 2  整体特征通道识别的自适应孪生网络跟踪算法示意图
层名 核尺寸 模板尺寸 搜索尺寸
input ? $127 \times 127$ $255 \times 255$
Conv1 $7 \times 7$,64 $64 \times 64$ $128 \times 128$
Crop ? $60 \times 60$ $124 \times 124$
Maxpool $2 \times 2$ $30 \times 30$ $62 \times 62$
Conv2_x+Crop×3 $\left[ {\begin{array}{*{20}{c}} {1 \times 1,64} \\ {3 \times 3,64} \\ {1 \times 1,256} \end{array}} \right]$ $24 \times 24$ $56 \times 56$
Conv3_1+Crop $\left[ {\begin{array}{*{20}{c}} {1 \times 1,{\rm{128}}} \\ {3 \times 3,{\rm{128}}} \\ {1 \times 1,{\rm{512}}} \end{array}} \right]$ $22 \times 22$ $54 \times 54$
Maxpool $2 \times 2$ $11 \times 11$ $27 \times 27$
Conv3_x+Crop×3 $\left[ {\begin{array}{*{20}{c}} {1 \times 1,{\rm{128}}} \\ {3 \times 3,{\rm{128}}} \\ {1 \times 1,{\rm{512}}} \end{array}} \right]$ $5 \times 5$ $21 \times 21$
表 1  ResNet22网络参数
图 3  高效通道注意力结构图
图 4  整体特征识别网络示意图
图 5  10种跟踪算法在OTB2015数据集上的结果图
算法 光照变化 面内旋转 低分辨率 遮挡 面外旋转 出视野 尺度变化 快速移动 背景干扰 运动模糊 形变
CFNET 0.706 0.768 0.760 0.703 0.741 0.536 0.727 0.716 0.734 0.633 0.696
SiamFC 0.741 0.742 0.847 0.726 0.756 0.669 0.738 0.743 0.690 0.705 0.693
SiamTri 0.752 0.774 0.897 0.730 0.763 0.723 0.752 0.763 0.715 0.727 0.683
LMCF 0.795 0.755 0.679 0.736 0.760 0.693 0.723 0.730 0.822 0.730 0.729
DSiamM 0.805 0.807 0.857 0.794 0.829 0.684 0.778 0.759 0.792 0.721 0.761
Staple 0.787 0.770 0.631 0.721 0.730 0.661 0.715 0.697 0.766 0.707 0.743
ECO-HC 0.792 0.783 0.798 0.806 0.811 0.737 0.805 0.792 0.824 0.780 0.818
DeepSRDCF 0.786 0.818 0.708 0.822 0.835 0.781 0.817 0.814 0.841 0.823 0.779
SiamDW 0.854 0.841 0.882 0.786 0.842 0.782 0.842 0.808 0.800 0.842 0.831
本研究算法 0.910 0.898 0.913 0.846 0.915 0.792 0.888 0.866 0.898 0.875 0.883
表 2  10种跟踪算法在OTB上11种属性的准确度
算法 光照变化 面内旋转 低分辨率 遮挡 面外旋转 出视野 尺度变化 快速移动 背景干扰 运动模糊 形变
CFNET 0.551 0.572 0.576 0.542 0.547 0.423 0.552 0.558 0.565 0.514 0.510
SiamFC 0.574 0.557 0.592 0.547 0.558 0.506 0.556 0.568 0.523 0.550 0.510
SiamTri 0.585 0.580 0.634 0.554 0.563 0.543 0.567 0.585 0.542 0.567 0.504
LMCF 0.601 0.543 0.450 0.554 0.553 0.539 0.519 0.551 0.606 0.561 0.525
DSiamM 0.608 0.599 0.606 0.583 0.599 0.509 0.576 0.579 0.589 0.562 0.544
Staple 0.596 0.552 0.418 0.545 0.531 0.481 0.518 0.537 0.574 0.546 0.552
ECO-HC 0.615 0.567 0.562 0.605 0.594 0.549 0.599 0.614 0.618 0.616 0.601
DeepSRDCF 0.624 0.589 0.475 0.603 0.607 0.553 0.607 0.628 0.627 0.642 0.567
SiamDW 0.656 0.611 0.607 0.598 0.615 0.588 0.625 0.627 0.596 0.659 0.608
本研究算法 0.666 0.633 0.585 0.618 0.642 0.582 0.636 0.648 0.636 0.669 0.638
表 3  10种跟踪算法在OTB上11种属性的成功率
图 6  10种跟踪算法在4个视频序列的跟踪效果图
图 7  7种算法在VOT2016数据集上的EAO结果图
跟踪算法 EAO 跟踪算法 EAO
本研究算法 0.3482 DeepSRDCF 0.2763
staple 0.2952 MDNET_N 0.2572
SiamDW 0.2885 SiamAN 0.2352
SiamRN 0.2766 ? ?
表 4  7种跟踪算法在VOT2016数据集上的性能评估
图 8  7种算法在VOT2018数据集上的EAO结果图
跟踪算法 EAO 跟踪算法 EAO
本研究算法 0.2610 SiamFC 0.1876
UpdateNet 0.2431 Staple 0.168 5
SiamDW 0.2262 DeepSRDCF 0.154 0
DSiam 0.195 9 ? ?
表 5  7种跟踪算法在VOT2018数据集上的性能评估
1 TANG S Y, ANDRILUKA M, ANDRES B, et al. Multiple people tracking by lifted multicut and person re-identification [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3539-3548.
2 LEE K H, HWANG J N On-road pedestrian tracking across multiple driving recorders[J]. IEEE Transactions on Multimedia, 2015, 17 (9): 1429- 1438
doi: 10.1109/TMM.2015.2455418
3 TEUTSCH M, KRUGER W. Detection, segmentation, and tracking of moving objects in uav videos [C]// 2012 IEEE Ninth International Conference on Advanced Video and Signal-based Surveillance. Beijing: IEEE, 2012: 313-318.
4 SMEULDERS A W M, CHU D M, CUCCHIARA R, et al Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (7): 1442- 1468
doi: 10.1109/TPAMI.2013.230
5 QI Y, ZHANG S, LEI Q, et al. Hedged deep tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4303-4311.
6 DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Convolutional features for correlation filter based visual tracking [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 58-66.
7 DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking [C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 472-488.
8 DANELLJAN M, BHAT G, KHAN F S, et al. Eco: efficient convolution operators for tracking [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 21-26.
9 BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking [C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 850-865.
10 VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5000-5008.
11 LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
12 WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4854-4863.
13 WU Y, LIM J, YANG M H Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848
doi: 10.1109/TPAMI.2014.2388226
14 KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results [C]// 14th European Conference on Computer Vision. Amsterdam: Springer, 2016, 9914: 777-823.
15 ZHANG Z P, PENG H W. Deeper and wider siamese networks for real-time visual tracking [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4591-4600.
16 WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
17 CAO Y, X J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 1971-1980.
18 WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4800-4808.
19 OLGA R, JIA D, HAO S, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
doi: 10.1007/s11263-015-0816-y
20 HUANG L, ZHAO X, HUANG K. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild [EB/OL]. [2020-05-18]. https://arxiv.org/abs/1810.11981.
21 GUO Q, FENG W, ZHOU C, et al. Learning dynamic siamese network for visual object tracking [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 1781-1789.
22 BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1401-1409.
23 DONG X P, SHEN J B. Triplet loss in siamese network for object tracking [C]// Proceedings of European Conference on Computer Vision. Munich: Springer, 2018: 459–474.
24 WANG M M, LIU Y, HUANG Z Y. Large margin object tracking with circulant feature maps [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4021-4029.
25 NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking [C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4293-4302.
[1] 王康豪,殷海兵,黄晓峰. 基于策略梯度的目标跟踪方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1923-1928.
[2] 荆丹翔,韩军,徐志伟,陈鹰. 基于成像声呐的水下多目标跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(4): 753-760.
[3] 王海军, 葛红娟, 张圣燕. 基于核协同表示的快速目标跟踪算法[J]. 浙江大学学报(工学版), 2017, 51(2): 399-407.
[4] 卢维, 项志宇, 于海滨, 刘济林. 基于自适应多特征表观模型的目标压缩跟踪[J]. 浙江大学学报(工学版), 2014, 48(12): 2132-2138.
[5] 王安定, 裘渔洋, 王秀萍, 余燕平, 李式巨. 基于Toeplitz降维子矩阵的空间多目标跟踪算法[J]. J4, 2012, 46(4): 739-743.
[6] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[7] 许雪梅, 李丽娴, 张键洋, 倪兰, 黄征宇, 曹建. 透明液体药剂中可见异物跟踪算法[J]. J4, 2012, 46(10): 1822-1830.
[8] 刘辉涛,汪李明,李建龙. 声纳强脉冲干扰的自适应抵消方法[J]. J4, 2011, 45(3): 515-519.
[9] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[10] 唐军, 金心宇, 张昱. 视频传感器网络基于位置的任务分配算法[J]. J4, 2010, 44(4): 670-674.
[11] 谢斌, 张开石, 潘华东, 等. 未知环境中无人机适航地图构建与地面目标跟踪[J]. J4, 2010, 44(1): 118-123.
[12] 刘佳 于慧敏. 基于水平集的运动目标检测和速度估算[J]. J4, 2009, 43(2): 244-249.
[13] 赵云峰 陈隆道 孟庆利. 提高红外经纬仪跟踪弱小目标精度的新算法[J]. J4, 2008, 42(7): 1169-1173.
[14] 周昌 郑雅羽 周凡 陈耀武. 基于局部图像描述的目标跟踪方法[J]. J4, 2008, 42(7): 1179-1183.
[15] 王长军 朱善安. 基于统计模型和活动轮廓的运动目标检测与跟踪[J]. J4, 2006, 40(2): 249-253.