计算机与控制工程 |
|
|
|
|
基于自然近邻与协同过滤的API推荐方法 |
郑黄河(),黄志球*(),李伟湋,喻垚慎,王永超 |
南京航空航天大学 计算机科学与技术学院,江苏 南京 210016 |
|
API recommendation method based on natural nearest neighbors and collaborative filtering |
Huang-he ZHENG(),Zhi-qiu HUANG*(),Wei-wei LI,Yao-shen YU,Yong-chao WANG |
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
郑黄河,黄志球,李伟湋,喻垚慎,王永超. 基于自然近邻与协同过滤的API推荐方法[J]. 浙江大学学报(工学版), 2022, 56(3): 494-502.
Huang-he ZHENG,Zhi-qiu HUANG,Wei-wei LI,Yao-shen YU,Yong-chao WANG. API recommendation method based on natural nearest neighbors and collaborative filtering. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 494-502.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.008
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/494
|
1 |
NIE L, JIANG H, REN Z, et al Query expansion based on crowd knowledge for code search[J]. IEEE Transactions on Services Computing, 2016, 9 (5): 771- 783
doi: 10.1109/TSC.2016.2560165
|
2 |
JIANG H, NIE L, SUN Z, et al ROSF: leveraging information retrieval and supervised learning for recommending code snippets[J]. IEEE Transactions on Services Computing, 2019, 12 (1): 34- 46
doi: 10.1109/TSC.2016.2592909
|
3 |
RAGHOTHAMAN M, WEI Y, HAMADI Y. SWIM: synthesizing what I mean—code search and idiomatic snippet synthesis [C]// Proceedings of the 38th International Conference on Software Engineering. Austin: ACM, 2016: 357–367.
|
4 |
GU X, ZHANG H, ZHANG D, et al. Deep API learning [C]// Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. Seattle: ACM, 2016: 631-642.
|
5 |
CAI L, WANG H, HUANG Q, et al. BIKER: a tool for Bi-information source based API method recommendation [C]// Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Tallinn: ACM, 2019: 1075-1079.
|
6 |
ZHOU Y, YANG X, CHEN T, et al Boosting API recommendation with implicit feedback[J]. IEEE Transactions on Software Engineering, 2021, 1 (1): 1
|
7 |
XIE W, PENG X, LIU M, et al. API method recommendation via explicit matching of functionality verb phrases [C]// Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Sacramento: ACM, 2020: 1015-1026.
|
8 |
LECUN Y, YOSHUA B Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995, 3361 (10): 1995
|
9 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
10 |
SCARSELLI F, GORI M, TSOI A, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20 (1): 61- 80
|
11 |
LING C, ZOU Y, XIE B. Graph neural network based collaborative filtering for API usage recommendation [C]// 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering . Tokyo: IEEE, 2021: 36-47.
|
12 |
ZHONG H, XIE T, ZHANG L, et al. MAPO: Mining and recommending API usage patterns [C]// European Conference on Object-Oriented Programming. Genoa: Springer, 2009: 318-343.
|
13 |
WANG J, DANG Y, ZHANG H, et al. Mining succinct and high-coverage API usage patterns from source code [C]// 2013 10th Working Conference on Mining Software Repositories. San Francisco: IEEE, 2013: 319-328.
|
14 |
FOWKES J, SUTTON C. Parameter-free probabilistic API mining across GitHub [C]// Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. Seattle : ACM, 2016: 254-265.
|
15 |
NGUYEN P T, ROCCO J D, RUSCIO D D, et al. FOCUS: a recommender system for mining API function calls and usage patterns [C]// International Conference on Software Engineering. Montreal: IEEE, 2019: 1050-1060.
|
16 |
CHEN A. Context-aware collaborative filtering system: predicting the user’s preference in the ubiquitous computing environment [C]// International Symposium on Location-and Context-Awareness. Berlin: Springer, 2005: 244-253.
|
17 |
GUO G, WANG H, BELL D, et al. KNN model-based approach in classification [C]// On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Montpellier: Springer, 2003: 986-996.
|
18 |
NGUYEN T, NGUYEN A, PHAN H, et al. Combining Word2Vec with revised vector space model for better code retrieval [C]// 2017 IEEE/ACM 39th International Conference on Software Engineering Companion. Buenos Aires: IEEE, 2017: 183-185.
|
19 |
NIU J, ZHAO Q, WANG L, et al. OnSeS: a novel online short text summarization based on BM25 and neural network [C]// 2016 IEEE Global Communications Conference. Washington: IEEE, 2016: 1-6.
|
20 |
RAMOS J. Using TF-IDF to determine word relevance in document queries [C]// Proceedings of the first instructional conference on machine learning. Moscow: Citeseer, 2003: 29-48.
|
21 |
ZHU Q, HUANG J, FENG J, et al A clustering algorithm based on natural nearest neighbor[J]. Journal of Computational Information Systems, 2014, 10 (13): 5473- 5480
|
22 |
XIE R, KONG X, WANG L, et al. Hirec: API recommendation using hierarchical context [C]// 2019 IEEE 30th International Symposium on Software Reliability Engineering. Berlin: IEEE, 2019: 369-379.
|
23 |
BASTEN B, HILLS M, KLINT P, et al. M3: a general model for code analytics in rascal [C]// 2015 IEEE 1st International Workshop on Software Analytics. Montreal: IEEE, 2015: 25-28.
|
24 |
JACCARD P The distribution of the flora in the alpine zone[J]. New phytologist, 1912, XI (2): 37- 50
|
25 |
NAH F A study on tolerable waiting time: how long are web users willing to wait?[J]. Behaviour Information Technology, 2004, 23 (3): 153- 163
doi: 10.1080/01449290410001669914
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|