计算机技术 |
|
|
|
|
采用评论挖掘修正用户评分的改进协同过滤算法 |
王红霞( ),陈健,程艳芬*( ) |
武汉理工大学 计算机科学与技术学院,湖北 武汉 430063 |
|
Improved collaborative filtering algorithm to revise users' rating by review mining |
Hong-xia WANG( ),Jian CHEN,Yan-fen CHENG*( ) |
School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China |
1 |
YU X, LIU Y, HUANG X, et al Mining online reviews for predicting sales performance: a case study in the movie domain[J]. IEEE Transactions on Knowledge and Data engineering, 2012, 24 (4): 720- 734
|
2 |
TAN Y, ZHANG Y, ZHANG M, et al. A unified framework for emotional elements extraction based on finite state matching machine [M] // Natural Language Processing and Chinese Computing. Berlin Heidelberg: Springer, 2013: 60–71.
|
3 |
ZHANG Y, LAI G, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis [C] // Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. Gold Coast: ACM, 2014: 83–92.
|
4 |
KIRAN M V K, VINODHINI R E, ARCHANAA R, et al. User specific product recommendation and rating system by performing sentiment analysis on product reviews [C] // 4th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore: IEEE, 2017: 1–5.
|
5 |
CHEN G, CHEN L Augmenting service recommender systems by incorporating contextual opinions from user reviews[J]. User Modeling and User-Adapted Interaction, 2015, 25 (3): 295- 329
|
6 |
XU X, DUTTA K, DATTA A Functionality-based mobile app recommendation by identifying aspects from user reviews[J]. Journal of the Association for Information Science and Technology, 2018, 69 (2): 242- 255
|
7 |
RESCHKE K, VOGEL A, JURAFSKY D. Generating recommendation dialogs by extracting information from user reviews [C] // Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 499–504.
|
8 |
GANU G, MARIAN A, ELHADAD N. Ursa-User review structure analysis: understanding online reviewing trends [R/OL]. Rutgers DCS Technical Report, No.668, April 2010. http://spidr-ursa.rutgers.edu/resources/TR_LRE.pdf.
|
9 |
GANU G, KAKODKAR Y, MARIAN A L Improving the quality of predictions using textual information in online user reviews[J]. Information Systems, 2013, 38 (1): 1- 15
|
10 |
MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: understanding rating dimensions with review text [C] // Proceedings of the 7th ACM conference on Recommender systems. New York: ACM, 2013: 165–172.
|
11 |
DEHKORDI Y H, THOMO A, GANTI S. Incorporating user reviews as implicit feedback for improving recommender systems [C] // The 4th IEEE International Conference on Big Data and Cloud Computing. Sydney: IEEE, 2014: 455–462.
|
12 |
张付志, 刘赛, 李忠华, 等 融合用户评论和环境信息的协同过滤推荐算法[J]. 小型微型计算机系统, 2014, 35 (2): 228- 232 ZHANG Fu-zhi, LIU Sai, LI Zhong-hua, et al Collaborative filtering recommendation algorithm incorporating user's reviews and contextual information[J]. Journal of Chinese Computer Systems, 2014, 35 (2): 228- 232
|
13 |
谭云志, 张敏, 刘奕群, 等 基于用户评分和评论信息的协同推荐框架[J]. 模式识别与人工智能, 2016, 29 (4): 359- 366 TAN Yun-zhi, ZHANG Min, LIU Yi-qun, et al Collaborative recommendation framework based on ratings and textual reviews[J]. Pattern Recognition and Artificial Intelligence, 2016, 29 (4): 359- 366
|
14 |
李伟霖, 王成良, 文俊浩 基于评论与评分的协同过滤算法[J]. 计算机应用研究, 2017, 34 (2): 361- 364 LI Wei-lin, WANG Cheng-liang, WEN Jun-hao Collaborative filtering recommendation algorithm based on reviews and ratings[J]. Application Research of Computers, 2017, 34 (2): 361- 364
|
15 |
王伟军, 宋艳秋, 张婷婷, 等 基于话语标记理论的在线商品评分修正方法[J]. 情报学报, 2016, 35 (4): 358- 368 WANG Wei-jun, SONG Yan-qiu, ZHANG Ting-ting A correction method for score deviation of online product reviews based on discourse markers theory[J]. Journal of The China Society for Scientific and Technical Information, 2016, 35 (4): 358- 368
|
16 |
郑修猛, 陈福才, 黄瑞阳, 等 面向协同推荐的评论文本情感打分机制研究[J]. 信息工程大学学报, 2017, 18 (4): 464- 469 ZHENG Xiu-meng, CHEN Fu-cai, HUANG Rui-yang, et al Sentiment rating mechanism research on review text for CF recommendation systems[J]. Journal of Information Engineering University, 2017, 18 (4): 464- 469
|
17 |
YANG H, SUH Y. Sentiment analysis of online customer reviews for product recommendation: comparison with traditional CF-based recommendation [C] // The Korea Society of Management Information Systems. Seoul: KMIS, 2015: 801–805.
|
18 |
WU Y, ZHANG Q, HUANG X, et al. Phrase dependency parsing for opinion mining [C] // Proceedings of the 2009 Conference on Empirical Methods in Natural Language. Singapore: EMNLP, 2009: 1533–1541.
|
19 |
扈中凯, 郑小林, 吴亚峰, 等 基于用户评论挖掘的产品推荐算法[J]. 浙江大学学报: 工学版, 2013, 47 (8): 1475- 1485 HU Zhong-kai, ZHENG Xiao-lin, WU Ya-feng, et al Product recommendation algorithm based on users' reviews mining[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (8): 1475- 1485
|
20 |
PANG B, LEE L Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2 (1-2): 1- 135
|
21 |
朱郁筱, 吕琳媛 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41 (2): 163- 175 ZHU Yu-xiao, LU Lin-yuan Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41 (2): 163- 175
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|