Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1475-1485    DOI: 10.3785/j.issn.1008-973X.2013.08.023
计算机技术﹑电信技术     
基于用户评论挖掘的产品推荐算法
扈中凯, 郑小林, 吴亚峰, 陈德人
浙江大学 计算机科学与技术学院,浙江 杭州 310027
Product recommendation algorithm based on users’ reviews mining
HU Zhong-kai, ZHENG Xiao-lin, WU Ya-feng, CHEN De-ren
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对电子商务推荐系统中,互联网“信息过载”所造成的难以精确定位用户兴趣并提供准确产品推荐的问题,通过深入挖掘电子商务社区中丰富的用户评论信息,开发产品特征提取算法,建立用户兴趣偏好模型,结合用户历史评分数据来改善传统协同过滤推荐算法的推荐准确性;利用相似度传递技术在一定程度上缓解推荐系统中数据稀疏性带来的问题.实验结果表明,在数据稀疏的情况下,该算法仍可较好地拟合用户对产品的兴趣偏好,并在推荐准确性方面较传统的协同过滤算法有明显的提高.

Abstract:

In E-commerce recommendation system, “Information overload” on Internet has brought a tough problem, which is how to precisely position users’ interest and provide users with accurate product recommendation. To solve this problem, in this paper, a product characteristic extraction algorithm was developed and a user preference model was constructed by deeply mining large-scale of user reviews in E-commerce community, to improve accuracy of traditional collaborative filtering recommendation algorithm with coordination of historic user rating information| moreover, data sparsity problem was alleviated with similarity propagation technique. Experiment results show that, in condition of sparse data, algorithm in this paper can still fit product preference of users very well, and has significantly improvement in accuracy compared with traditional collaborative filtering algorithm.

出版日期: 2013-08-01
:  TP 319  
基金资助:

国家科技支撑计划资助项目(2012BAH16F02);国家自然科学基金资助项目(61003254).

通讯作者: 郑小林,男,副教授.     E-mail: xlzheng@zju.edu.cn
作者简介: 扈中凯(1987—),男,博士生,从事为推荐系统、自然语言处理等研究.E-mail: huzhongkai2005@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

扈中凯, 郑小林, 吴亚峰, 陈德人. 基于用户评论挖掘的产品推荐算法[J]. J4, 2013, 47(8): 1475-1485.

HU Zhong-kai, ZHENG Xiao-lin, WU Ya-feng, CHEN De-ren. Product recommendation algorithm based on users’ reviews mining. J4, 2013, 47(8): 1475-1485.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.08.023        http://www.zjujournals.com/eng/CN/Y2013/V47/I8/1475

\
[1\] SPINELLIS D, RAPTIS K. Component mining: A process and its pattern language \
[J\]. Information and Software Technology, 2000, 42(9): 609-617.

\
[2\] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry \
[J\]. Communications of the ACM, 1992, 35(12): 61-70.

\
[3\] KONSTAN J A, MILLER B N, MALTZ D, et al. Grouplens: applying collaborative filtering to Usenet news \
[J\]. Communications of the ACM, 1997, 40(3): 77-87.

\
[4\] SARWAR B, KARYPIS G, KONSTAN J, et al. Application of dimensionality reduction in recommender system-a case study \
[R\]. Minnesota Univ Minneapolis Dept of Computer Science, 2000.

\
[5\] 邓爱林,左子叶,朱扬勇,等. 基于项目聚类的协同过滤推荐算法\
[J\]. 小型微型计算机系统. 2004, 25(9): 1665-1670.

DENG Ai-lin, ZUO Zi-ye, Zhu Yang-yong, et al. Collaborative filtering recommendation algorithm based on item clustering \
[J\]. Mini-micro Systems, 2004, 25(9): 1665-1670.

\
[6\] AGGARWAL C C, WOLF J L, WU K L, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering \
[C\]∥ Proc. Fifth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining. San Diego: ACM, 1999: 201-212.

\
[7\] HU M, LIU B. Mining opinion features in customer reviews \
[C\]∥ Proc. of AAAI 2004. San Jose: AAAI, 2004: 755-760.

\
[8\] ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the web: An experimental study \
[J\]. Artificial Intelligence, 2005, 165(1): 91-134.

\
[9\] TURNEY P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews \
[C\]∥ Proc. of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2002: 417-424.

\
[10\] RILOFF E., WIEBE J. Learning extraction patterns for subjective expressions \
[C\]∥ Proc. of the 2003 conference on Empirical methods in NLP. Sapporo: Association for Computational Linguistics, 2003: 105-112.

\
[11\] 娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究\
[J\].计算机应用.2006, 26(11): 2622-2625.

LOU De-cheng, YAO Tian-fang. Semantic polarity analysis and opinion mining on Chinese review sentences \
[J\]. Computer Applications, 2006, 26(11): 2622-2625.

\
[12\] 姚天昉,聂青阳,李建超,等.一个用于汉语汽车评论的意见挖掘系统\
[C\]∥中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006: 260-281.

YAO Tian-Fang, NIE Qing-yang, Li Jian-chao, et al. An opinion mining system for Chinese automobile reviews \
[C\]∥Proc. of 25th Anniversary of Chinese Information Processing Society of China. BeiJing: TsingHua University Press, 2006: 260281.

\
[13\] 姚天昉,娄德成. 汉语语句主题语义倾向分析方法的研究\
[J\]. 中文信息学报. 2007, 21(5): 73-79.

YAO Tian-fang, LOU De-cheng. Research on semantic orientation analysis for topics in Chinese sentences \
[J\] Journal of Chinese Information Procession, 2007, 21(5): 73-79.

\
[14\] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions \
[J\]. Knowledge and Data Engineering, IEEE Transactions on, 2005, 17(6): 734-749.

\
[15\] WIETSMA R T A, RICCI F. Product reviews in mobile decision aid systems \
[C\]∥ The 3rd International Conference on Pervasive Computing (PERVASIVE 2005). Munich: PERMID, 2005: 15-18.

\
[16\] RICCI F, WIETSMA R T A. Product reviews in travel decision making \
[J\]. Information and Communication Technologies in Tourism, 2006: 296-307.

\
[17\] ACIAR S, ZHANG D, SIMOFF S, et al. Recommender system based on consumer product reviews \
[C\]∥ Proc. of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. Hong Kong: IEEE Computer Society, 2006:719-723.

\
[18\] 吴亚峰.基于评论挖掘的协同过滤推荐算法研究\
[D\].杭州:浙江大学, 2012.

WU Ya-feng, Research of a collaborative filtering recommendation algorithm based on review mining\
[D\]. Hangzhou: Zhejiang University, 2012.

\
[19\] 赵文婧.产品描述词及情感词抽取模式的研究\
[D\].北京邮电大学, 2010.

ZHAO Wen-jing. Research on Extraction patterns of product description words and sentiment words \
[D\], Beijing University of Posts and Telecommunications, Beijing: 2010.

\
[20\] HERLOCKER J, KONSTAN J A., RIEDL J. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms \
[J\]. Information retrieval, 2002, 5(4): 287-310.

\
[21\] MCLAUGHLIN M R, HERLOCKER J L. A collaborative filtering algorithm and evaluation metric that accurately model the user experience \
[C\]∥ Proc. of the 27th Annual International ACM SIGIR Conference on Research and development in Information retrieval. University of Sheffield: ACM, 2004: 329-336.

\
[22\] MA H, KING I, LYU M R. Effective missing data prediction for collaborative filtering \
[C\]∥ Proc. of the 30th Annual International ACM SIGIR Conference on Research and Development in Information retrieval. Amsterdam: ACM, 2007: 39-46.

\
[23\] 胡福华,郑小林,干红华.基于相似度传递的协同过滤算法\
[J\].计算机工程.2011(10): 50-51.

HU Fu-hua, ZHENG Xiao-lin, GAN Hong-hua. Collaborative filtering algorithm based on similarity propagation \
[J\]. Computer Engineering, 2011(10): 50-51.

\
[24\] 卢竹兵.基于信任关系的协同过滤推荐策略研究\
[D\].重庆:西南大学.2008: 2641.

LU Zhu-bing. Study on trust relationship based collaborative, filtering recommender strategy \
[D\]. Chongqing: Southwest University, 2008: 26-41.

[1] 郑思渊,王青,李江雄,柯映林,李松. 飞机翼身交点精加工通信系统设计与集成技术[J]. J4, 2013, 47(7): 1274-1280.
[2] 张少中, 方朝曦, 陈军敢, 施炯. 基于社会网络的电子商务信任社区聚类模型[J]. J4, 2013, 47(4): 656-661.
[3] 李俊,郑小林,陈德人. 基于信任的组合服务选择方法[J]. J4, 2012, 46(5): 885-892.
[4] 郑小林,刘驰,贝毅君,陈德人. 具有抗攻击能力的信誉与信任模型[J]. J4, 2011, 45(3): 405-411.