土木工程、交通工程 |
|
|
|
|
高铁接触网U型抱箍螺母故障检测算法 |
牛英杰1(),苏燕辰1,*(),程敦诚1,廖家1,赵海波2,高永强3 |
1. 西南交通大学 机械工程学院,四川 成都 610031 2. 中车长春轨道客车股份有限公司,吉林 长春 130000 3. 中国神华能源股份有限公司神朔铁路分公司,陕西 榆林 719000 |
|
High-speed rail contact network U-holding nut fault detection algorithm |
Ying-jie NIU1(),Yan-chen SU1,*(),Dun-cheng CHENG1,Jia LIAO1,Hai-bo ZHAO2,Yong-qiang GAO3 |
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 2. CRRC Changchun Rail Bus Limited Company, Changchun 130000, China 3. Shenshuo Railway Branch, China Shenhua Energy Limited Company, Yulin 719000, China |
引用本文:
牛英杰,苏燕辰,程敦诚,廖家,赵海波,高永强. 高铁接触网U型抱箍螺母故障检测算法[J]. 浙江大学学报(工学版), 2021, 55(10): 1912-1921.
Ying-jie NIU,Yan-chen SU,Dun-cheng CHENG,Jia LIAO,Hai-bo ZHAO,Yong-qiang GAO. High-speed rail contact network U-holding nut fault detection algorithm. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1912-1921.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.013
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1912
|
1 |
韩帅. 基于机器视觉的接触网管帽及U型抱箍故障检测算法研究[D]. 石家庄: 石家庄铁道大学, 2019. HAN Shuai. Research on fault detection algorithm of catenary cap and U-shaped hoop based on machine vision [D]. Shijiazhuang: Shijiazhuang Railway University, 2019.
|
2 |
闵锋, 郎达, 吴涛 基于语义分割的接触网开口销状态检测[J]. 华中科技大学学报:自然科学版, 2020, 48 (1): 77- 81 MIN Feng, LANG Da, WU Tao Detection of cotter pin status based on semantic segmentation[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (1): 77- 81
|
3 |
狄亚柳. 基于深度学习的高铁接触网悬挂目标检测图像处理研究[D]. 成都: 西南交通大学, 2018. DI Ya-liu. Research on image processing of high-speed rail catenary suspension target detection based on deep learning [D]. Chengdu: Southwest Jiaotong University, 2018.
|
4 |
徐钥斌. 图像处理在接触网吊弦缺陷检测中的应用[D]. 成都: 西南交通大学, 2018. XU Yao-bin. The application of image processing in the detection of catenary hanging string defects [D]. Chengdu: Southwest Jiaotong University, 2018.
|
5 |
赵亚男, 吴黎明, 陈琦 基于多尺度融合SSD的小目标检测算法[J]. 计算机工程, 2020, 46 (1): 247- 254 ZHAO Ya-nan, WU Li-ming, CHEN Qi Small target detection algorithm based on multi-scale fusion SSD[J]. Computer Engineering, 2020, 46 (1): 247- 254
|
6 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
7 |
HU J, SHEN L, SUN G. Squeeze and excitation networks [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
8 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
9 |
李长江, 韩志伟, 钟俊平, 等 基于级联Faster R-CNN的高铁接触网支撑装置等电位线故障检测[J]. 铁道学报, 2019, 41 (6): 68- 73 LI Chang-jiang, HAN Zhi-wei, ZHONG Jun-ping, et al High-speed rail catenary support device equipotential line fault detection based on cascaded Faster R-CNN[J]. Journal of the China Railway Society, 2019, 41 (6): 68- 73
doi: 10.3969/j.issn.1001-8360.2019.06.010
|
10 |
刘凯, 刘志刚, 陈隽文 基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究[J]. 铁道学报, 2019, 41 (7): 43- 49 LIU Kai, LIU Zhi-gang, CHEN Jun-wen Research on crack detection of high-speed railway catenary cable base based on accelerated regional convolutional neural network[J]. Journal of the China Railway Society, 2019, 41 (7): 43- 49
doi: 10.3969/j.issn.1001-8360.2019.07.006
|
11 |
赵文清, 周震东, 翟永杰 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15 (2): 310- 316 ZHAO Wen-qing, ZHOU Zhen-dong, ZHAI Yong-jie SSD small target detection algorithm based on deconvolution and feature fusion[J]. Journal of Intelligent Systems, 2020, 15 (2): 310- 316
|
12 |
章琳, 袁非牛, 张文睿, 等 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56 (1): 25- 37 ZHANG Lin, YUAN Fei-niu, ZHANG Wen-rui, et al A review of research on fully convolutional neural networks[J]. Computer Engineering and Applications, 2020, 56 (1): 25- 37
doi: 10.3778/j.issn.1002-8331.1910-0164
|
13 |
温尧乐, 李林燕, 尚欣茹, 等 一种改进的Mask RCNN特征融合实例分割方法[J]. 计算机应用与软件, 2019, 36 (10): 130- 133 WEN Yao-le, LI Lin-yan, SHANG Xin-ru, et al An improved Mask RCNN feature fusion instance segmentation method[J]. Computer Applications and Software, 2019, 36 (10): 130- 133
doi: 10.3969/j.issn.1000-386x.2019.10.023
|
14 |
李山坤, 陈立伟, 李爽 基于实例分割的双目特征点匹配目标识别和定位研究[J]. 无线电工程, 2020, 50 (2): 90- 96 LI Shan-kun, CHEN Li-wei, LI Shuang Research on target recognition and location based on instance segmentation with binocular feature point matching[J]. Radio Engineering, 2020, 50 (2): 90- 96
doi: 10.3969/j.issn.1003-3106.2020.02.002
|
15 |
王聪, 张珑 一种基于双分支车道线实例分割的检测算法[J]. 无线互联科技, 2020, 17 (3): 117- 118 WANG Cong, ZHANG Long A detection algorithm based on instance segmentation of dual-branch lane lines[J]. Wireless Internet Technology, 2020, 17 (3): 117- 118
doi: 10.3969/j.issn.1672-6944.2020.03.051
|
16 |
杨红梅, 刘志刚 基于SURF特征匹配的电气化铁路接触网支撑装置旋转双耳不良状态检测[J]. 铁道学报, 2016, 38 (8): 28- 34 YANG Hong-mei, LIU Zhi-gang Detection of the bad state of the rotating binaural of the catenary support device of the electrified railway based on SURF feature matching[J]. Journal of the Railway Society, 2016, 38 (8): 28- 34
doi: 10.3969/j.issn.1001-8360.2016.08.005
|
17 |
钟俊平, 刘志刚, 张桂南, 等 高铁接触网旋转双耳销钉状态检测方法研究[J]. 铁道学报, 2017, 39 (6): 65- 71 ZHONG Jun-ping, LIU Zhi-gang, ZHANG Gui-nan, et al Research on the detection method of rotating binaural pins for high-speed railway catenary[J]. Journal of the China Railway Society, 2017, 39 (6): 65- 71
doi: 10.3969/j.issn.1001-8360.2017.06.009
|
18 |
周俊, 陈剑云 基于DSSD的接触网鸟窝识别检测研究[J]. 华东交通大学学报, 2019, 36 (6): 70- 78 ZHOU Jun, CHEN Jian-yun Study on the identification and detection of catenary bird's nest based on DSSD[J]. Journal of East China Jiaotong University, 2019, 36 (6): 70- 78
|
19 |
TANG Z, YANG J l, LI Z, et al Grape disease image classification based on lightweight convolution neural networks and channelwise attention[J]. Computers and Electronics in Agriculture, 2020, 178 (2): 105735
|
20 |
ROY A G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks [J]// IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549.
|
21 |
SHUO Z, SERENA B, WILLIAM B Segmentation of X-ray microtomography data of porous scaffold[J]. Key Engineering Materials, 2007, 330-332 (Pt2): 911- 914
|
22 |
TAN M, PAN R, LEE Q V. EfficientDet: scalable and efficient object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
|
23 |
ZHANG T, LI L. An improved object detection algorithm based on M2Det [C]// 2020 IEEE International Conference on Artificial Intelligence and Computer Applications. Dalian: IEEE, 2020: 582-585.
|
24 |
SRINIVASAN A, SRIKANTH A, INDRAJIT H, et al. A novel approach for road accident detection using DETR algorithm [C]// 2020 International Conference on Intelligent Data Science Technologies and Applications. Valencia: [s. n. ], 2020: 75-80.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|