Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1190-1197    DOI: 10.3785/j.issn.1008-973X.2019.06.019
计算机与自动化技术     
缆系水下信息网恒流远供系统短路故障诊断及区间定位方法
张政(),周学军*(),王希晨,周媛媛
海军工程大学 电子工程学院,湖北 武汉 430033
Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks
Zheng ZHANG(),Xue-jun ZHOU*(),Xi-chen WANG,Yuan-yuan ZHOU
College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
 全文: PDF(1014 KB)   HTML
摘要:

通过分析电流流向的有向矩阵变化和平均误差值,诊断恒流远供系统短路故障状态;计算故障前、后干线电流在拉普拉斯变换域内变化的平均误差值,判定短路故障区间;隔离短路故障段以维护恒流远供系统其余部分正常运作,提高缆系水下信息网络的可靠性. 根据所建立的经典环形拓扑结构恒流模型设计故障定位方案,仿真恒流远供系统中主节点和干线海缆段的短路故障,分析故障前、后各节点处电流在拉普拉斯变换域内的变化. 结果显示,当系统出现短路故障时,各节点电流在拉普拉斯变换域内发生变换,通过对比故障前、后电流变化差值可以分析出故障区间。所设计的恒流远供系统短路故障诊断及区间定位方案具有较高的可行性和实用性,适用于未来水下信息网络的短路故障监测判定.

关键词: 缆系水下信息网络恒流供电短路故障故障诊断区间定位    
Abstract:

The short-circuit fault status of constant current remote supply system was diagnosed by analyzing the directional matrix of the current flow direction and the mean error value. Fault intervals were located by calculating the change of mean error values of current in trunk before and after the fault in Laplace transform domain. Isolate the short-circuit fault to maintain normal operation of the rest of the system, thus improving the reliability of cabled underwater information networks. According to the established typical ring topology constant current remote supply system circuit model, the fault location scheme was designed to simulate the short-circuit faults of the primary nodes and the trunk cable sections in the constant current remote supply system, and to analyze the change of current located at the primary nodes in the Laplace transform domain before and after the fault. Results show that the current of each primary node changes in the Laplace transform domain when the system has a short-circuit fault. The fault interval can be analyzed and located by comparing the difference in current change before and after the fault. The designed method of short-circuit fault diagnosis and interval location for constant current remote supply system has high feasibility and practicability, which is suitable for the short-circuit fault monitoring and judgement of cabled underwater information networks in the future.

Key words: cabled underwater information networks    constant current    short-circuit fault    fault diagnosis    interval location
收稿日期: 2018-05-15 出版日期: 2019-05-22
CLC:  TM 773  
通讯作者: 周学军     E-mail: hjgczhangz@163.com;Xuejun-Zhou@163.com
作者简介: 张政(1992—),男,博士生,从事水下信息网络研究. orcid.org/0000-0002-4424-9305. E-mail: hjgczhangz@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张政
周学军
王希晨
周媛媛

引用本文:

张政,周学军,王希晨,周媛媛. 缆系水下信息网恒流远供系统短路故障诊断及区间定位方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1190-1197.

Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1190

图 1  恒流远供系统运维示意图
图 2  恒流远供系统短路故障隔离示意图
图 3  双端9节点环形恒流远供系统模型
图 4  恒流远供系统短路故障反馈示意图
图 5  电流冲击反馈经过海缆段电路等效图
$s$域电流等效值 ${I_{{\rm PN}1}}$ ${I_{{\rm PN}2}}$ ${I_{{\rm PN}3}}$ ${I_{{\rm PN}4}}$ ${I_{{\rm PN}5}}$ ${I_{{\rm PN}6}}$ ${I_{{\rm PN}7}}$ ${I_{{\rm PN}8}}$ ${I_{{\rm PN}9}}$
故障前 1.501 1.494 1.504 1.513 1.511 1.499 1.501 1.490 1.498
故障瞬间 1.577 1.579 1.582 1.586 1.428 1.434 1.438 1.441 1.442
变化值 0.076 0.085 0.078 0.073 ?0.08 ?0.065 ?0.063 ?0.049 ?0.057
表 1  PN4和PN5发生短路故障前、瞬间各PN处拉普拉斯变换域电流等效值
图 6  PN4和PN5之间海缆段发生短路故障电流示意图
$s$域电流等效值 ${I_{{\rm PN}1}}$ ${I_{{\rm PN}2}}$ ${I_{{\rm PN}3}}$ ${I_{{\rm PN}4}}$ ${I_{{\rm PN}5}}$ ${I_{{\rm PN}6}}$ ${I_{{\rm PN}7}}$ ${I_{{\rm PN}8}}$ ${I_{{\rm PN}9}}$
故障前 1.503 1.489 1.509 1.504 1.502 1.494 1.498 1.502 1.518
故障瞬间 3.051 1.133 1.137 1.153 1.159 1.155 1.159 1.162 1.163
变化值 1.548 ?0.356 ?0.372 ?0.351 ?0.343 ?0.339 ?0.339 ?0.340 ?0.355
表 2  PN1和PN2发生短路故障前、瞬间各PN处拉普拉斯变换域电流等效值
图 7  PN1和PN2之间海缆段发生短路故障电流示意图
$s$域电流等效值 ${I_{{\rm PN}1}}$ ${I_{{\rm PN}2}}$ ${I_{{\rm PN}3}}$ ${I_{{\rm PN}4}}$ ${I_{{\rm PN}5}}$ ${I_{{\rm PN}6}}$ ${I_{{\rm PN}7}}$ ${I_{{\rm PN}8}}$ ${I_{{\rm PN}9}}$
故障前 1.491 1.504 1.496 1.501 1.497 1.502 1.497 1.502 1.504
故障瞬间 2.155 2.156 0 1.297 1.303 1.309 1.313 1.316 1.317
变化值 0.664 0.652 ?1.496 ?0.204 ?0.194 ?0.193 ?0.184 ?0.186 ?0.187
表 3  PN3发生短路故障前、后各PN处拉普拉斯变换域电流等效值
图 8  PN3发生短路故障电流示意图
1 “中国工程科技2035发展战略研究”海洋领域课题组 中国海洋工程科技2035发展战略研究[J]. 中国工程科学, 2017, 19 (1): 108- 117
Task Force for the Research on China’s Engineering Science and Technology Development Strategy 2035 Marine Research Group Development strategy for China’s marine engineering science and technology to 2035[J]. Engineering Sciences, 2017, 19 (1): 108- 117
2 上海海洋科技研究中心. 海底观测——科学与技术的结合[M]. 上海: 同济大学出版社, 2011: 123-237.
3 汪品先 从海底观察地球——地球系统的第三个观测平台[J]. 自然杂志, 2007, 29 (3): 125- 130
WANG Pin-xian Seafloor observatories: the third platform for earth system observation[J]. Chinese Journal of Nature, 2007, 29 (3): 125- 130
doi: 10.3969/j.issn.0253-9608.2007.03.001
4 吕枫, 周怀阳 缆系海底科学观测网研究进展[J]. 工程研究-跨学科视野中的工程, 2016, 8 (2): 139- 154
LV Feng, ZHOU Huai-yang Progress of scientific cabled seafloor observatory networks[J]. Journal of Engineering Studies, 2016, 8 (2): 139- 154
5 李春光, 王瑛剑 水下信息网络" 三网合一”分析[J]. 光通信技术, 2012, 36 (9): 16- 18
LI Chun-guang, WANG Ying-jian Analysis for " combination of three nets” of underwater information network[J]. Optical Communication Technology, 2012, 36 (9): 16- 18
doi: 10.3969/j.issn.1002-5561.2012.09.005
6 陈燕虎. 基于树型拓扑的缆系海底观测网供电接驳关键技术研究[D]. 杭州: 浙江大学, 2012: 23-38.
CHEN Yan-hu. Research on the key technologies of power junction for cabled ocean observatories system based on tree topology [D]. Hangzhou: Zhejiang University, 2012: 23-38.
7 王克林, KATE Moran 加拿大海王星: 科学、运行、管理[J]. 地球科学进展, 2013, 28 (5): 521- 528
WANG Ke-lin, KATE Moran NEPTUNE Canada: science, operation, and management[J]. Advances in Earth Science, 2013, 28 (5): 521- 528
8 HOWE B M, KIRKHAM H, VORPERIAN V Power system considerations for undersea observatories[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (2): 267- 274
doi: 10.1109/JOE.2002.1002481
9 周学军, 樊诚, 李大伟, 等 缆系海底观测网恒流输电系统供电方案选择[J]. 电力系统自动化, 2015, 39 (19): 126- 131
ZHOU Xue-jun, FAN Cheng, LI Da-wei, et al Power scheme selecting method for constant current power system of cabled seafloor observatory network[J]. Automation of Electric Power Systems, 2015, 39 (19): 126- 131
doi: 10.7500/AEPS20141221005
10 KAWAGUCHI K, KANEDA Y, ARAKI E. The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring [C] // OCEANS 2008. Kobe: MTS/IEEE, 2008: 1-4.
11 KAWAGUCHI K, ARAKI E, KANEDA Y. A design concept of seafloor observatory network for earthquakes and tsunamis [C] // Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2007: 176-178.
12 林芳, 肖先勇, 李国栋, 等 考虑电压测量误差的故障概率定位方法[J]. 电网技术, 2015, 39 (12): 3592- 3597
LIN Fang, XIAO Xian-yong, LI Guo-dong, et al Probabilistic fault localization method considering voltage measurement errors[J]. Power System Technology, 2015, 39 (12): 3592- 3597
13 冯迎宾, 李智刚, 王晓辉, 等 海底观测网光电复合缆开路故障识别及区间定位方法[J]. 电力系统自动化, 2015, 39 (10): 151- 156
FENG Ying-bin, LI Zhi-gang, WANG Xiao-hui, et al Open-circuit fault identification and interval locating method of optoelectric cable of seafloor observatory network[J]. Automation of Electric Power Systems, 2015, 39 (10): 151- 156
doi: 10.7500/AEPS20140305006
14 ZHANG Z, XU F, JIN B, et al. An active node isolating method based on discrete-voltage intervention for seafloor observation network [C] // OCEANS 2015. Washington: MTS/IEEE, 2015: 1-5.
15 徐兴华, 马伟明, 崔小鹏, 等 分段供电切换传感器的在线故障诊断方法[J]. 国防科技大学学报, 2016, 38 (6): 24- 36
XU Xing-hua, MA Wei-ming, CUI Xiao-peng, et al Online fault diagnosis method of segment-powered switch control sensor[J]. Journal of National University of Defense Technology, 2016, 38 (6): 24- 36
16 张烁. 高压直流输电系统线路保护、故障重启及故障测距方法的研究 [D]. 天津: 天津大学, 2014: 23-34.
ZHANG Shuo. Research on HVDV line protection, DC line fault recovery and fault location [D]. Tianjin: Tianjin University, 2014: 23-34.
17 林圣, 武骁, 何正友, 等 基于行波固有频率的电网故障定位方法[J]. 电网技术, 2013, 37 (1): 270- 275
LIN Sheng, WU Xiao, HE Zheng-you, et al A power system fault location method based on natural frequencies of traveling waves[J]. Power System Technology, 2013, 37 (1): 270- 275
18 杨凡. CAN网络暂态性连接故障定位方法研究[D], 杭州: 浙江大学, 2016: 35-52.
YANG Fan. Fault localization of intermittent connections for CAN networks[D]. Hangzhou: Zhejiang University, 2016: 35-52.
19 HARRISDW, DUENNEBIER FK Powering cabled ocean-bottom observatories[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (2): 201- 211
20 工业和信息化部第四研究院. 海底光缆通用规范: GJB 4489—2002[S]. 北京: 中央军委装备发展部, 2002.
21 王希晨. 缆系水下基础信息网络平台关键技术研究[D]. 武汉: 海军工程大学, 2015: 71-74.
WANG Xi-chen. Research on the key technologies of cabled underwater basic information network platform[D]. Wuhan: Naval University of Engineering, 2015: 71-74.
[1] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
[2] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[3] 林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.
[4] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.
[5] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[6] 余建波, 李传锋, 吕靖香. 轴承故障信号的平均组合差值形态滤波分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1845-1853.
[7] 祝文颖, 冯志鹏. 基于迭代Hilbert变换的行星齿轮箱振动信号分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1587-1595.
[8] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[9] 陈辰,厉小润. 基于线圈电流分析的操动机构故障诊断方法[J]. 浙江大学学报(工学版), 2016, 50(3): 527-535.
[10] 韩玲, 卢延辉, 安颖, 田丽媛. 基于容错理论无级变速器故障诊断分类[J]. 浙江大学学报(工学版), 2016, 50(10): 1927-1936.
[11] 罗林, 苏宏业, 班岚. Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报(工学版), 2015, 49(11): 2230-2236.
[12] 密刚刚,周文华,沈成宇,郭修其. 柴油机高速电磁阀驱动模块设计与故障诊断[J]. J4, 2012, 46(9): 1654-1659.
[13] 杨先勇, 周晓军, 林勇, 张文斌, 沈路. 基于V-detector算法的滚动轴承故障诊断方法[J]. J4, 2010, 44(9): 1805-1810.
[14] 杨先勇, 周晓军, 张文斌, 杨富春. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. J4, 2010, 44(8): 1519-1524.
[15] 杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259.