Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1815-1825    DOI: 10.3785/j.issn.1008-973X.2019.09.021
通信技术、电气工程     
永磁同步电机驱动系统电流传感器容错控制
林京京(),沈艳霞*()
江南大学 物联网技术应用教育部工程研究中心,江苏 无锡 214122
Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system
Jing-jing LIN(),Yan-xia SHEN*()
Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi 214122, China
 全文: PDF(3918 KB)   HTML
摘要:

为实现永磁同步电机矢量控制系统中电流传感器的故障诊断及其容错控制,确保系统的安全性,基于矢量旋转的概念提出一种新颖的故障诊断及容错控制方法. 建立3个不同轴定向的坐标系,将坐标系下α轴定子电流分量的指令值和测量值比较,判断3个电流传感器的故障信息;基于Lyapunov稳定性定理设计自适应反推观测器进行电流估计;根据3个坐标系设计逻辑判断机制,故障发生时以恰当的估计电流取代测量电流进行反馈以重构系统,保证电机在故障发生时稳定运行. 仿真和实验结果证明:该策略能够有效实现永磁同步电机驱动系统中三相电流传感器的故障诊断、准确判断故障相,在重构电流过程中,αβ坐标系电流分量的选取正确而稳定,测量电流与估计电流的不同组合能够保持较高性能,维持系统的稳定性,具有较高的可行性和可靠性.

关键词: 永磁同步电机(PMSM)故障诊断容错控制矢量旋转自适应反推观测器    
Abstract:

A novel fault diagnosis and fault tolerant control method was introduced based on the concept of vector rotation to realize the current sensors' fault diagnosis and tolerant control in vector control system of permanent magnet synchronous motor (PMSM), to ensure system security. In order to get the fault information of three current sensors, three coordinate systems with different axes orientation was established, and the command value and the measured value of the α current components were compared. An adaptive backstepping observer was designed based on Lyapunov's stability theorem to estimate the current. Then, a logic-based detection mechanism was proposed based on the three coordinate systems; when fault occured, the measured current was replaced by the appropriate estimated current for feedback to reconstruct the system and ensure the stable operation of system. Simulations and experiments were carried out. Results show that this strategy can effectively realize the fault diagnosis of three current sensors in the PMSM drive system and accurately determine the fault phase. In the process of reconstructed current, the current component selection of αβ coordinate system was correct and stable, and the different combinations of measured current and estimated current can maintain high performance and system stability, which verifies the effectiveness and reliability of the proposed method.

Key words: permanent magnet synchronous machine (PMSM)    fault diagnosis    fault tolerant control    vector rotation    adaptive backstepping observer
收稿日期: 2018-07-28 出版日期: 2019-09-12
CLC:  TM 341  
通讯作者: 沈艳霞     E-mail: linjingjing112@163.com;shenyx@jiangnan.edu.cn
作者简介: 林京京(1994—),男,硕士生,从事永磁同步电机容错控制研究. orcid.org/0000-0003-0006-0372. E-mail: linjingjing112@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林京京
沈艳霞

引用本文:

林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.

Jing-jing LIN,Yan-xia SHEN. Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1815-1825.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.021        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1815

图 1  按定子 ${{a}}$相定向的坐标系Ⅰ
图 2  按定子 ${{b}}$相定向的坐标系Ⅱ
图 3  按定子 ${{c}}$相定向的坐标系Ⅲ
图 4  自适应反推观测器结构框图
图 5  定子电流传感器故障诊断图
图 6   ${{\alpha}} $轴电流逻辑判断图
图 7   $\;{{\beta}} $轴电流逻辑判断图
图 8  电角度逻辑判断图
图 9   ${{d}}\text{、}{{q}}$轴电流逻辑判断图
x y z a b c α β 电角度
0 0 0 正常 正常 正常 $i_\alpha ^{\rm I}$ $i_\beta ^{\rm I}$ $\theta $
1 0 0 故障 正常 正常 $i_\alpha ^{{\rm I}{\rm I}}$ $i_\beta ^{{\rm I}{\rm I}}$ $ \theta - {120^\circ } $
0 1 0 正常 故障 正常 $i_\alpha ^{{\rm I}{\rm I}{\rm I}}$ $i_\beta ^{{\rm I}{\rm I}{\rm I}}$ $\theta + {120^\circ } $
0 0 1 正常 正常 故障 $i_\alpha ^{\rm I}$ $i_\beta ^{\rm I}$ $\theta $
1 1 0 故障 故障 正常 $i_\alpha ^{{\rm I}{\rm I}{\rm I}}$ $\mathop {i_\beta ^{{\rm I}{\rm I}{\rm I}}}\limits^ \wedge $ $ \theta + {120^\circ }$
1 0 1 故障 正常 故障 $i_\alpha ^{{\rm I}{\rm I}}$ $\mathop {i_\beta ^{{\rm I}{\rm I}}}\limits^ \wedge $ $ \theta -{120^\circ } $
0 1 1 正常 故障 故障 $i_\alpha ^{\rm I}$ $\mathop {i_\beta ^{\rm I}}\limits^ \wedge $ $\theta $
1 1 1 故障 故障 故障 $\mathop {i_\alpha ^{\rm I}}\limits^ \wedge $ $\mathop {i_\beta ^{\rm I}}\limits^ \wedge $ $\theta $
表 1  容错策略逻辑判断表
图 10  容错控制系统总体结构图
参数 含义 数值 单位
${P_{\rm{N}}}$ 额定功率 1.5 ${\rm{kW}}$
${\omega _{\rm{N}}}$ 额定转速 1 000 ${\rm{r}}/{\rm{min}}$
${i_{\rm{N}}}$ 额定相电流 6.76 ${\rm{A}}$
${T_{\rm{N}}}$ 额定转矩 14.32 ${\rm{N}} \cdot {\rm{m}}$
${R_{\rm{s}}}$ 定子电阻 1.79 $\Omega $
${L_q}$ 交轴电感 6.68 ${\rm{mH}}$
${L_d}$ 直轴电感 6.68 ${\rm{mH}}$
$J$ 转动惯量 17.92 ${\rm{kg}} \cdot {{\rm{m}}^{\rm{2}}}$
$p$ 极对数 4 ?
表 2  表贴式永磁同步电机(PMSM)参数
图 11  三相电流传感器故障仿真效果
图 12  基于dSPACE1007的永磁同步电机实验平台
图 13  三相电流传感器故障实验结果
1 CONSOLI A, SCARCELLA G, SCELBA G, et al Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control[J]. IEEE Transactions on Industry Applications, 2010, 46 (1): 121- 129
doi: 10.1109/TIA.2009.2036665
2 DE ALMEIDA A T, FERREIRA F J T E, FONG J A C Standards for efficiency of electric motors[J]. IEEE Industry Applications Magazine, 2011, 17 (1): 12- 19
doi: 10.1109/MIAS.2010.939427
3 李国飞, 滕青芳, 王传鲁, 等 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报: 工学版, 2017, 51 (3): 620- 627
LI Guo-fei, TENG Xing-fang, WANG Chuan-lu FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 620- 627
4 WANG W, CHENG M, ZHANG B F, et al A fault tolerant permanent-magnet traction module for subway applications[J]. IEEE Transactions on Power Electronics, 2013, 29 (4): 1646- 1658
5 AKRAD A, HILAIRET M, DIALLO D Design of a fault tolerant controller based on observers for a PMSM drive[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (4): 1416- 1427
doi: 10.1109/TIE.2010.2050756
6 BELLINI A, FILIPPETTI F, TASSONI C, et al Advances in diagnostic techniques for induction machines[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (12): 4109- 4126
doi: 10.1109/TIE.2008.2007527
7 GAO Z W, CECATI C, DINGS X A survey of fault diagnosis and fault tolerant techniques. Part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 6 (62): 3757- 3767
8 LEE K S, RYU J S Instrument fault detection and compensation scheme for direct torque controlled induction motor drives[J]. IEE Proceedings-Control Theory and Applications, 2003, 4 (150): 376- 382
9 YU Y, WANG Z Y, XU D N Speed and current sensors fault detection and isolation based on adaptive observers for induction motor drivers[J]. Journal of Power Electronics, 2014, 5 (14): 967- 979
10 HUANG G, LUO Y P, ZHANG C F, et al Current sensor fault diagnosis based on a sliding mode observer for PMSM driven systems[J]. Sensors, 2015, 15 (5): 11027- 11049
doi: 10.3390/s150511027
11 BERRIRI H, NAOUAR W, BAHRI I, et al Field programmable gate array-based fault tolerant hysteresis current control for AC machine drives[J]. IET Electric Power Applications, 2012, 6 (3): 181- 189
doi: 10.1049/iet-epa.2011.0053
12 WU C Y, GUO C Q, XIE Z W, et al A signal-based fault detection and tolerance control method of current sensor for PMSM drive[J]. IEEE Transactions on Industrial Electronics, 2018, PP (99): 1
13 KHIL S K E, JLASSI I, ESTIMA J O, et al Current sensor fault detection and isolation method for PMSM drives, using average normalised currents[J]. Electronics Letters, 2016, 52 (17): 1434- 1436
doi: 10.1049/el.2016.2198
14 FREIRE N M A, ESTIMA J O, CARDOSO A J M A new approach for current sensor fault diagnosis in PMSG drives for wind energy conversion systems[J]. IEEE Transactions on Industry Applications, 2014, 50 (2): 1206- 1214
doi: 10.1109/TIA.2013.2271992
15 MEINGUET F, GYSELINCK J. Fault detection, isolation and reconfiguration of three-phase AC drive with current sensor fault [C] // IEEE International Electric Machines and Drives Conference. Niagara Falls: IEEE, 2011: 200-205.
16 NAJAFABADI T A, SALMASI F R, MARALANI P J Detection and isolation of speed-, dc-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (5): 1662- 1672
doi: 10.1109/TIE.2010.2055775
17 BENG G F H, ZHANG X N, VILATHGAMUWA D M A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2013, 61 (8): 3485- 3495
18 CHAKRABORTY C, VERMA V Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (3): 1943- 1954
doi: 10.1109/TIE.2014.2345337
19 张信, 杨振强, 吴梦杰 基于电流估计的永磁同步电机矢量控制[J]. 微特电机, 2016, 44 (5): 52- 59
ZHANG Xin, YANG Zhen-qiang, WU Meng-jie Vector control of PMSM based on the current estimate[J]. Small and Special Electrical Machines, 2016, 44 (5): 52- 59
[1] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
[2] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[3] 张政,周学军,王希晨,周媛媛. 缆系水下信息网恒流远供系统短路故障诊断及区间定位方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1190-1197.
[4] 赵硕丰,黄晓艳,方攸同. 低开关频率选择谐波消除调制的母线波动补偿[J]. 浙江大学学报(工学版), 2019, 53(2): 388-398.
[5] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.
[6] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[7] 余建波, 李传锋, 吕靖香. 轴承故障信号的平均组合差值形态滤波分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1845-1853.
[8] 祝文颖, 冯志鹏. 基于迭代Hilbert变换的行星齿轮箱振动信号分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1587-1595.
[9] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[10] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[11] 陈辰,厉小润. 基于线圈电流分析的操动机构故障诊断方法[J]. 浙江大学学报(工学版), 2016, 50(3): 527-535.
[12] 韩玲, 卢延辉, 安颖, 田丽媛. 基于容错理论无级变速器故障诊断分类[J]. 浙江大学学报(工学版), 2016, 50(10): 1927-1936.
[13] 罗林, 苏宏业, 班岚. Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报(工学版), 2015, 49(11): 2230-2236.
[14] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[15] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.