Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1903-1911    DOI: 10.3785/j.issn.1008-973X.2021.10.012
土木工程、交通工程     
横风作用下大跨度人行悬索桥振动使用性研究
唐剑明(),谢旭*()
浙江大学 建筑工程学院,浙江 杭州 310058
Investigation on vibration serviceability of long-span suspension footbridge under crosswind
Jian-ming TANG(),Xu XIE*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2369 KB)   HTML
摘要:

为了研究大跨人行悬索桥(LSSF)由横向风引起的振动舒适性问题,以主跨为460 m的柔性人行桥为对象,利用谱表示法生成不同湍流强度下的脉动风时程. 基于数值模拟方法识别的18个颤振导数,计算有理函数表达的自激力. 通过横风作用下的非线性抖振响应时域分析,比较自激力和结构阻尼对抖振响应的影响,分析湍流强度对抖振响应和舒适性的影响,讨论具有不同设计参数的中央扣和抗风缆对减轻桥梁抖振响应的效果. 结果表明,自激力对大跨度人行悬索桥的抖振响应有不可忽视的影响;在平均风速为15 m/s的横风作用下,湍流强度增加50%,桥梁的抖振响应增加30%~68%;中央扣能够明显减小1/4跨和3/4跨的竖向振动;增加抗风缆刚度能够有效减小竖向及跨中横向振动.

关键词: 大跨度人行悬索桥使用性横风自激力湍流强度减振    
Abstract:

A flexible footbridge with main span of 460 m was taken as an object in order to analyze the problem of vibration serviceability of long-span suspension footbridge (LSSF) induced by crosswind. Fluctuating wind time histories with different turbulence intensities were generated with spectral representation method. Rational-function-expressed self-excited force was calculated based on 18 flutter derivatives identified by numerical simulation method. The influence of self-excited force on buffeting response was compared with those of structural damping through nonlinear buffeting response analysis in time domain under crosswind. The influences of turbulence intensity on buffeting response and comfort were analyzed. The mitigation effects of central buckle and wind-resistant cable with different design parameters on the buffeting response of bridge were discussed. Results show that self-excited force has a non-negligible influence on buffeting response of LSSF. Turbulence intensity increases by 50% under the crosswind with a mean wind speed of 15 m/s, and the buffeting response of the bridge increases by 30%-68%. Central buckle can obviously reduce vertical vibration at 1/4 span and 3/4 span. Increasing the stiffness of wind-resistant cable can effectively reduce lateral vibration at mid-span and vertical vibration.

Key words: long-span suspension footbridge    serviceability    crosswind    self-excited force    turbulence intensity    vibration mitigation
收稿日期: 2020-12-09 出版日期: 2021-10-27
CLC:  U 448  
基金资助: 国家自然科学基金资助项目(51878606)
通讯作者: 谢旭     E-mail: 21812216@zju.edu.cn;xiexu@zju.edu.cn
作者简介: 唐剑明(1995—),男,硕士生,从事人行悬索桥振动舒适性的研究. orcid.org/0000-0001-6406-4458. E-mail: 21812216@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐剑明
谢旭

引用本文:

唐剑明,谢旭. 横风作用下大跨度人行悬索桥振动使用性研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1903-1911.

Jian-ming TANG,Xu XIE. Investigation on vibration serviceability of long-span suspension footbridge under crosswind. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1903-1911.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.012        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1903

图 1  桥梁布置图
图 2  桥梁有限元模型
振型 fnat /Hz 偏差/%
精细模型 等效模型
1阶对称侧弯 0.160 2 0.162 3 1.3
1阶反对称侧弯与扭转 0.222 3 0.221 0 ?0.6
1阶反对称竖弯 0.247 9 0.235 5 ?5.0
1阶对称竖弯 0.282 7 0.275 4 ?2.6
1阶对称侧弯与扭转 0.288 4 0.305 9 6.0
2阶对称竖弯 0.394 6 0.381 8 ?3.2
1阶反对称扭转 0.398 2 0.382 5 ?4.0
1阶对称扭转 0.409 4 0.398 3 ?2.7
2阶对称扭转 0.520 7 0.503 5 ?3.3
表 1  精细模型与等效模型动力特性对比
图 3  主梁静风力
图 4  非线性抖振时域分析的流程图
图 5  脉动风模拟点的布置
脉动风编号 位置 模拟风速 模拟点数 ttot /s
1 主梁 u 49 50 176
2 主梁 w 49 50 176
3 南塔 u 10 10 240
4 北塔 u 10 10 240
5 主缆 u 49 50 176
表 2  脉动风模拟参数
图 6  脉动风模拟样本与检验
图 7  用于CFD模拟的混合网格
图 8  加劲梁三分力系数及导数
图 9  加劲梁0°风攻角颤振导数
图 10  自激力与结构阻尼对主梁抖振位移响应的影响
图 11  不同湍流强度下主梁跨中抖振响应比较
舒适性分级 舒适度 ay,peak /(m·s?2 az,peak /(m·s?2
CL1 非常舒适 <0.1 <0.5
CL2 中等舒适 0.1~0.3 0.5~1.0
CL3 不太舒适 0.3~0.8 1.0~2.5
CL4 不能忍受 >0.8 >2.5
表 3  舒适性等级及相应加速度范围[20]
图 12  加速度时程及舒适性评价的结果
图 13  不同模型的中央扣布置情况
图 14  中央扣对主梁抖振位移响应的影响
振型 fnat /Hz
C-1 C-2
1阶对称侧弯 0.197 6 0.222 8
1阶反对称侧弯与扭转 0.250 5 0.271 0
1阶反对称竖弯 0.256 8 0.271 0
1阶对称竖弯 0.280 1 0.282 6
1阶对称扭转 0.398 8 0.400 8
1阶反对称扭转 0.416 5 0.433 8
表 4  增大抗风缆面积后的桥梁动力特性
图 15  抗风缆对主梁抖振位移响应的影响
1 NAKAMURA S, KAWASAKI T A method for predicting the lateral girder response of footbridges induced by pedestrians[J]. Journal of Constructional Steel Research, 2009, 65 (8/9): 1705- 1711
2 DALLARD P, FITZPATRICK A J, FLINT A, et al The London millennium footbridge[J]. The Structural Engineer, 2001, 79 (22): 17- 33
3 陈隽 人致荷载研究综述[J]. 振动与冲击, 2017, 36 (23): 1- 9
CHEN Jun A review of human-induced loads study[J]. Journal of Vibration and Shock, 2017, 36 (23): 1- 9
4 CAPRANI C C, AHMADI E Formulation of human-structure interaction system models for vertical vibration[J]. Journal of Sound and Vibration, 2016, 377: 346- 367
doi: 10.1016/j.jsv.2016.05.015
5 VENUTI F, REGGIO A Mitigation of human-induced vertical vibrations of footbridges through crowd flow control[J]. Structural Control and Health Monitoring, 2018, 25 (12): e2266
doi: 10.1002/stc.2266
6 熊耀清, 何云明, 吴小宾 大跨极窄人行悬索桥动力特性及风振响应研究[J]. 建筑结构, 2010, 40 (9): 148- 152
XIONG Yao-qing, HE Yun-ming, WU Xiao-bin Research on dynamic characteristics and wind vibration response of a pedestrian large-span and slender suspension bridge[J]. Building Structure, 2010, 40 (9): 148- 152
7 刘健新, 何晗欣, 武俊彦 窄桥面悬索桥非线性抖振时域分析[J]. 桥梁建设, 2009, (6): 19- 22
LIU Jian-xin, HE Han-xin, WU Jun-yan Time domain analysis of nonlinear buffeting of narrow deck suspension bridges[J]. Bridge Construction, 2009, (6): 19- 22
8 陈代海, 李整, 张超 大跨度窄桥面钢桁架悬索桥抖振影响因素分析[J]. 铁道建筑, 2016, (11): 10- 14
CHEN Dai-hai, LI Zheng, ZHANG Chao Influential factors analysis of buffeting for long-span narrow deck steel truss suspension bridge[J]. Railway Engineering, 2016, (11): 10- 14
doi: 10.3969/j.issn.1003-1995.2016.11.03
9 华旭刚, 杨坤, 温青, 等 悬索桥钢桁梁断面质量惯性矩简化计算方法[J]. 湖南大学学报: 自然科学版, 2017, 44 (3): 1- 7
HUA Xu-gang, YANG Kun, WEN Qing, et al A simplified method for calculating mass moment of inertia of stiffening truss in suspension bridges[J]. Journal of Hunan University: Natural Sciences, 2017, 44 (3): 1- 7
10 CHEN X, KAREEM A Advances in modeling of aerodynamic forces on bridge decks[J]. Journal of Engineering Mechanics, 2002, 128 (11): 1193- 1205
doi: 10.1061/(ASCE)0733-9399(2002)128:11(1193)
11 LI Q C, LIN Y K New stochastic theory for bridge stability in turbulent flow. II[J]. Journal of Engineering Mechanics, 1995, 121 (1): 102- 116
doi: 10.1061/(ASCE)0733-9399(1995)121:1(102)
12 张志田, 陈政清, 李春光 桥梁气动自激力时域表达式的瞬态与极限特性[J]. 工程力学, 2011, 28 (2): 75- 85
ZHANG Zhi-tian, CHEN Zheng-qing, LI Chun-guang Limiting and transient characteristics of time-domain expressions for bridge self-excited aerodynamic forces[J]. Engineering Mechanics, 2011, 28 (2): 75- 85
13 DEODATIS G Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122 (8): 778- 787
doi: 10.1061/(ASCE)0733-9399(1996)122:8(778)
14 JING H, LIAO H, MA C, et al Field measurement study of wind characteristics at different measuring positions in a mountainous valley[J]. Experimental Thermal and Fluid Science, 2020, 112: 109991
doi: 10.1016/j.expthermflusci.2019.109991
15 中华人民共和国交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018 [S]. 北京: 人民交通出版社, 2018.
16 LIAO H, JING H, MA C, et al Field measurement study on turbulence field by wind tower and windcube lidar in mountain valley[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104090
doi: 10.1016/j.jweia.2019.104090
17 SIMU E, SCANLAN R H. Wind effects on structures: fundamentals and applications to design [M]. 3th ed. New York: Wiley, 1996: 518.
18 DAVENPORT A G The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87 (372): 194- 211
doi: 10.1002/qj.49708737208
19 CAPRANI C C, KEOGH J, ARCHBOLD P, et al Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading[J]. Computers and Structures, 2012, 102-103: 87- 96
doi: 10.1016/j.compstruc.2012.03.006
20 Research Fund for Coal and Steel. HiVoSS: design of footbridges [M]. Luxembourg: [s.n.], 2008: 12.
[1] 刘佩,朱海鑫,杨维国,皇甫楠琦. 机械振动引起的高层建筑共振与减振响应实测[J]. 浙江大学学报(工学版), 2020, 54(1): 102-109.
[2] 赵萌, 毛军. 组合模型对受电弓横风气动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1-.
[3] 赵萌, 毛军. 组合模型对受电弓横风气动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2246-2253.
[4] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[5] 徐兵, 张军辉, 杨华勇, 叶绍干. 基于串联式轴向柱塞泵转位角降噪方法仿真[J]. J4, 2013, 47(1): 94-101.
[6] 袁佩,谢旭,申永刚. 考虑减振装置影响的拱桥吊杆张力测试方法及应用[J]. J4, 2012, 46(9): 1592-1598.
[7] 李一民, 郝志勇, 叶慧飞. 柴油机正时齿轮系动力学特性分析[J]. J4, 2012, 46(8): 1472-1477.
[8] 王维锐, 吴参, 潘双夏, 等. 车辆半主动悬架负刚度控制策略研究[J]. J4, 2009, 43(6): 1129-1133.
[9] 潘栋 潘双夏 冯培恩 王维锐. 基于神经网络的减振器性能仿真[J]. J4, 2007, 41(11): 1898-1902.
[10] 潘双夏 杨礼康 陈入领 冯培恩. 可调油压减振器的稳健设计[J]. J4, 2005, 39(3): 359-363.
[11] 王维锐 潘双夏 王芳 杨礼康. 磁流变液减振器模拟工况实验台控制策略研究[J]. J4, 2005, 39(12): 1915-1919.