Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1509-1516    DOI: 10.3785/j.issn.1008-973X.2018.08.010
机械工程     
频带多尺度复合模糊熵及其在轴承故障诊断中的应用
童水光, 张依东, 徐剑, 从飞云
浙江大学 工学部, 浙江 杭州 310027
Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings
TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun
Faulty of Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1711 KB)   HTML
摘要:

旋转机械设备发生滚动轴承故障的早期,受环境噪声影响,故障特征轻微.为了有效提取滚动轴承的故障信号冲击特征,以时频分析为基础,结合信息熵理论,提出一种频带多尺度复合模糊熵的故障诊断方法.与模糊熵相比,基于方差的频带多尺度复合模糊熵可以定量地表征非平稳信号的数据信息,抗干扰性强,更好地反映出不同频带分量在时间轴上的变化特性.引入自适应带通滤波器,成功实现对微弱故障的特征提取和故障识别.仿真分析和实验结果表明,提出的方法较传统滤波方法在降噪抑制方面效果更好,能够快速识别滚动轴承的冲击特征.

Abstract:

The fault characteristic frequency is mostly weak and submerged in background noise when the early fault occurs in the rotating machinery. A new method based on time-frequency analysis and spectral band refined composite multiscale fuzzy entropy was proposed for fault diagnosis. The proposed refined composite multiscale fuzzy entropy based on variance showed better performance than the conditional fuzzy entropy in quantifying the complexity of non-stationary signal and effectively reflected the variation of each frequency band component with time. The adaptive bandpass filter was introduced to extract weak fault feature through strong background noise. Compared with other filtered methods, the proposed method has advantage in recognizing weak shock features of rolling bearings, which is verified by the simulation and experimental results.

收稿日期: 2017-05-25 出版日期: 2018-08-23
CLC:  TH17  
基金资助:

国家自然科学基金资助项目(51305392);浙江省自然科学基金重点资助项目(LZ15E050001,LY17E050009);流体动力与机电系统国家重点实验室青年基金资助项目(SKLoFP_QN_1501);浙江省重点研发计划(2018C01020)

通讯作者: 从飞云,男,讲师.orcid.org/0000-0003-1727-7164.     E-mail: cloudswk@zju.edu.cn
作者简介: 童水光(1960-),男,教授,从事机械CAD/CAE的研究.orcid.org/0000-0001-5908-7401.E-mail:cetongsg@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.

TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1509-1516.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1509

[1] 何正嘉. 机械故障诊断理论及应用[M]. 北京:高等教育出版社, 2010:1-8
[2] 何正嘉, 訾艳阳, 张西宁. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社, 2007:1-5
[3] 邵忍平, 曹精明, 李永龙. 基于EMD小波阈值去噪和时频分析的齿轮故障模式识别与诊断[J]. 振动与冲击, 2012, 31(8):96-101 SHAO Ren-ping, CAO Jing-ming, LI Yong-long. Gear fault pattern identification and diagnosis using time-frequency analysis and wavelet threshold de-noising based on EMD[J]. Journal of Vibration and Shock, 2012, 31(8):96-101
[4] 王涛, 孟凡顺, 李洋森, 等. 不同时频分析方法的精度比较及应用[J]. 海洋地质前沿, 2013, 29(3):60-64 WANG Tao, MENG Fan-shun, LI Yang-sen, et al. The comparison of time-frequency analysis methods and their application[J]. Marine Geology Frontiers, 2013, 29(3):60-64
[5] OBUCHOWSKI J, WYLOMANSKA A, ZIMROZ R. The local maxima method for enhancement of time-frequency map and its application to local damage detection in rotating machines[J]. Mechanical Systems and Signal Processing, 2014, 46(2):389-405.
[6] 王宏超, 陈进, 霍柏琦, 等. 强抗噪时频分析方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(1):90-96 WANG Hong-chao, CHEN Jin, HUO Bai-qi, et al. Noise-resistant time-frequency analysis method and its application in fault diagnosis of rolling bearing[J]. Journal of Mechanical Engineering, 2015, 51(1):90-96
[7] 李宏坤, 张学峰, 徐福健,等. 基于时频分析的欠定信号盲分离与微弱特征提取[J]. 机械工程学报, 2014, 50(18):14-22 LI Hong-kun, ZHANG Xue-feng, XU Fu-jian, et al. Investigation on blind source separation for under-determined mixtures based on time-frequency analysis and weak feature extraction[J]. Journal of Mechanical Engineering, 2014, 50(18):14-22
[8] 林京, 梁屈生. 信号时频熵及其在齿轮裂纹识别中的应用[J]. 机械传动, 1998, 22(2):37-39 LIN Jing, LIANG Qu-sheng. Signal time frequency entropy and it application on crack identification of gear[J]. Mechanical Drive, 1998, 22(2):37-39
[9] 申弢, 黄树红, 韩守木, 等. 旋转机械振动信号的信息熵特征[J]. 机械工程学报, 2001, 37(6):94-98 SHEN Tao, HUANG Shu-hong, HAN Shou-mu, et al. Extracting information entropy features for rotating machinery vibration signals[J]. Chinese Journal of Mechanical Engineering, 2001, 37(6):94-98
[10] 于德介, 张嵬, 程军圣, 等. 基于EMD的时频熵在齿轮故障诊断中的应用[J]. 振动与冲击, 2005, 24(5):26-29 YU De-jie, ZHANG Wei, CHENG Jun-sheng, et al. Application of time-frequency entropy to gear fault diagnosis based on EMD[J]. Journal of Vibration and Shock, 2005, 24(5):26-29
[11] 王小玲, 陈进, 从飞云. 基于时频的频带熵方法在滚动轴承故障识别中的应用[J]. 振动与冲击, 2012, 31(18):29-33 WANG Xiao-ling, CHEN Jin, CONG Fei-yun. Application of spectral band entropy (SBE) method in rolling bearing fault diagnosis based on time-frequency analysis[J]. Journal of Vibration and Shock, 2012, 31(18):29-33
[12] 刘韬, 陈进, 董广明. 基于频带熵的滚动轴承故障诊断研究[J]. 振动与冲击, 2014, 33(1):77-80 LIU Tao, CHEN Jin, DONG Guang-ming. Rolling element bearing fault diagnosis based on frequency band entropy[J]. Journal of Vibration and Shock, 2014, 33(1):77-80
[13] 刘学, 梁红, 张志国. 基于自适应多尺度时频熵的遥测振动信号异常检测方法[J]. 计算机测量与控制, 2015, 23(8):2629-2632 LIU Xue, LIANG Hong, ZHANG Zhi-guo. Telemetry vibration signal abnormality detection method based on adaptive multi-scale time-frequency entropy[J]. Computer Measurement and Control, 2015, 23(8):2629-2632
[14] TSAI A, LUH J, LIN T. A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition[J]. Expert Systems with Applications, 2015, 42(7):3327-3341.
[15] 向丹, 葛爽. 一种基于小波包样本熵和流形学习的故障特征提取模型[J]. 振动与冲击, 2014, 33(11):1-5 XIANG Dan, GE Shuang. A model of fault feature extraction based on wavelet packet sample entropy and manifold learning[J]. Journal of Vibration and Shock, 2014, 33(11):1-5
[16] 郑近德, 陈敏均, 程军圣, 等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2014, 27(1):145-151 ZHENG Jin-de, CHEN Min-jun, CHENG Jun-sheng, et al. Multiscale fuzzy entropy and its application in rolling bearing fault diagnosis[J]. Journal of Vibration Engineering, 2014, 27(1):145-151
[17] 李宝庆, 程军圣, 吴占涛, 等. 基于ASTFA和PMMFE的齿轮故障诊断方法[J]. 振动工程学报, 2016, 29(5):928-935 LI Bao-qing, CHENG Jun-sheng, WU Zhan-tao, et al. Gear fault diagnosis method based on the adaptive and sparsest time-frequency analysis method and partial mean multi-scale fuzzy entropy[J]. Journal of Vibration Engineering, 2016, 29(5):928-935
[18] AZAMI H, ESCUDERO J. Refined composite multivariate generalized multiscale fuzzy entropy:a tool for complexity analysis of multichannel signals[J]. Physica A:Statistical Mechanics and its Applications, 2017, 465:261-276.
[19] 杨望灿, 张培林, 王怀光, 等. 基于EEMD的多尺度模糊熵的齿轮故障诊断[J]. 振动与冲击, 2015, 34(14):163-187 YANG Wang-can, ZHANG Pei-lin, WANG Huai-guang, et al. Gear fault diagnosis based on multiscale fuzzy entropy of EEMD[J]. Journal of Vibration and Shock, 2015, 34(14):163-187
[20] PINCUS S M. Assessing serial irregularity and its implications for health[J]. Annals of the New York Academy of Sciences, 2001, 954(1):245-267.
[21] 丛培田, 韩辉, 梁国军. 基于共振解调法的机车轴承故障诊断[J]. 机床与液压, 2010, 38(9):146-148 CONG Pei-tian, HAN Hui, LIANG Guo-jun. Failure diagnosis of locomotive car bearing system based on resonating demodulation method[J]. Machine Tool and Hydraulics, 2010, 38(9):146-148

No related articles found!