机械工程 |
|
|
|
|
基于一维卷积神经网络的钻杆故障诊断 |
金列俊1(),詹建明1,2,*(),陈俊华1,2,王涛2 |
1. 浙江大学 机械工程学院,浙江 杭州 310027 2. 浙江大学宁波理工学院 机电与能源工程学院,浙江 宁波 315100 |
|
Drill pipe fault diagnosis method based on one-dimensional convolutional neural network |
Lie-jun JIN1(),Jian-ming ZHAN1,2,*(),Jun-hua CHEN1,2,Tao WANG2 |
1. Institute of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 2. School of Mechanical and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China |
引用本文:
金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
Lie-jun JIN,Jian-ming ZHAN,Jun-hua CHEN,Tao WANG. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 467-474.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.006
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I3/467
|
1 |
张震. 旋挖钻机钻杆失效研究[D]. 西安: 长安大学, 2011. ZHANG Zhen. Failure of the drill pipe rotary drilling rig [D]. Xi’an: Chang’an University, 2011.
|
2 |
YU X, DONG F, DING E, et al Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection[J]. IEEE Access, 2018, 6: 3715- 3730
doi: 10.1109/ACCESS.2017.2773460
|
3 |
RAFIEE J, RAFIEE M A, TSE P W Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J]. Expert Systems with Applications, 2010, 37 (6): 4568- 4579
doi: 10.1016/j.eswa.2009.12.051
|
4 |
SINGH D S, ZHAO Q Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines[J]. Mechanical Systems and Signal Processing, 2016, 81: 202- 218
doi: 10.1016/j.ymssp.2016.03.007
|
5 |
LI H, ZHANG Y. Bearing faults diagnosis based on EMD and Wigner-Ville distribution [C] // World Congress on Intelligent Control and Automation. Dalian: IEEE, 2006: 5447-5451.
|
6 |
GAN M, WANG C, ZHU C Multiple-domain manifold for feature extraction in machinery fault diagnosis[J]. Measurement, 2015, 75: 76- 91
doi: 10.1016/j.measurement.2015.07.042
|
7 |
唐赛, 何荇兮, 张家悦, 等 基于长短期记忆网络的轴承故障识别[J]. 汽车工程学报, 2018, 8 (4): 297- 303 TANG Sai, HE Xing-xi, ZHANG Jia-yue, et al Bearing fault identification based on long short-term memory networks[J]. Chinese Journal of Automotive Engineering, 2018, 8 (4): 297- 303
doi: 10.3969/j.issn.2095-1469.2018.04.09
|
8 |
HINCHI A Z, TKIOUAT M Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127: 123- 132
doi: 10.1016/j.procs.2018.01.106
|
9 |
ZHAO R, YAN R, WANG J, et al Learning to monitor machine health with convolutional bi-directional LSTM networks[J]. Sensors, 2017, 17 (2): 273
doi: 10.3390/s17020273
|
10 |
杜振. 基于EMD原理与BP神经网络的旋挖钻机钻杆故障识别方法[D]. 杭州: 浙江大学, 2018. DU Zhen. Drill pipe fault identification method of rotaty drilling rig based on EMD principle and BP neural network [D]. Hangzhou: Zhejiang University, 2018.
|
11 |
张少奇. 基于小波变换与SVM的钻杆故障诊断[D]. 杭州: 浙江大学, 2018. ZHANG Shao-qi. Drill pipe fault diagnosis based on wavelet transform and SVM [D]. Hangzhou: Zhejiang University, 2018.
|
12 |
LE C Y, BOSER B E, DENKER J S, et al Handwritten digit recognition with a back-propagation network[J]. Advances in neural information processing systems, 1990, 396- 404
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
|
14 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C] // Proceedings of the IEEE conference on computer vision and pattern recognition. Columbus: IEEE, 2014: 580-587.
|
15 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C] // Advances in Neural Information Processing Systems. Montreal: [s. n.] 2014: 2672-2680.
|
16 |
KRIZHEVSKY A, SUTSKEYER I, HINTON G E. Imagenet classification with deep convolutional neural networks [C] // Advances in neural information processing systems. Lake Tahoe: IEEE, 2012: 1097-1105.
|
17 |
BOUVRIE J. Notes on convolutional neural networks[R/OL]. Massachusetts Institute of Technology. (2016-09-15)[2018-04-20]. http://cogprints.org/5869/1/cnn_tutorial.pdf.
|
18 |
LECUN Y, BOTTOU L, BENGIO Y, et al Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324
doi: 10.1109/5.726791
|
19 |
HUBEL D H, WIESEL T N Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160 (1): 106- 154
doi: 10.1113/jphysiol.1962.sp006837
|
20 |
SIMONYAN K, ZISSERMAN A. very deep convolutional networks for large-scale image recognition [C] // Computer Vision and Pattern Recognition. Columbus: CVPR, 2014: 1409-1556.
|
21 |
SHEIKH N, KEFATO Z T, MONTRESOR A. Semi-Supervised heterogeneous information network embedding for node classification using 1D-CNN [C] // 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS). Valencia: IEEE, 2018: 177-181.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|