Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 931-939    DOI: 10.3785/j.issn.1008-973X.2020.05.010
机械工程     
基于一维卷积神经网络的螺旋铣刀具磨损监测
汪海晋(),尹宗宇,柯臻铮*(),郭英杰,董辉跃
浙江大学 机械工程学院,浙江省先进制造技术重点研究实验室,浙江 杭州 310027
Wear monitoring of helical milling tool based on one-dimensional convolutional neural network
Hai-jin WANG(),Zong-yu YIN,Zhen-zheng KE*(),Ying-jie GUO,Hui-yue DONG
Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1147 KB)   HTML
摘要:

基于传统机器学习的螺旋铣刀具磨损监测方法需要复杂的特征提取和丰富的经验知识,不同磨损阶段具有相同的错误分类代价,针对这些问题,结合电流信号一维性特点,提出基于一维卷积神经网络(1D CNN)和代价敏感学习的螺旋铣刀具磨损监测方法. 采集机器人螺旋铣末端执行器主轴、公转轴和进给轴电流作为监测信号,并采用滑动窗口法进行样本划分,在降低网络容量的同时增加样本数量和多样性;在网络损失函数中引入代价矩阵并增加急剧磨损阶段的错误分类代价,使得1D CNN具有代价敏感性;直接将电流时域信号输入1D CNN,网络可以自动提取刀具磨损特征,并将特征提取和不同磨损阶段分类融合在一起. 试验结果表明,在机器人螺旋铣系统中,该方法的刀具磨损监测准确率为99.29%,在急剧磨损阶段的查全率为99.60%.

关键词: 螺旋铣刀具磨损监测电流信号一维卷积神经网络(1D CNN)代价敏感学习    
Abstract:

Helical milling tool wear monitoring methods based on traditional machine learning require complex feature extraction and rich experience, and different wear stages have the same misclassification cost. A new method based on the one-dimensional convolutional neural network (1D CNN) and cost-sensitive learning was introduced, aiming at the above problems and considering the characteristics of one dimension of current signals. Current signals are acquired through spindle, revolution shaft and feed shaft of robotic helical milling end-effector respectively as monitoring signals, and samples are divided using sliding window method to reduce network capacity and increase sample numbers and diversity at the same time. The cost matrix is introduced into the network loss function and the misclassification cost of severe wear stage is increased to make 1D CNN cost sensitive. The time domain current signals are input into 1D CNN directly, and the network can extract tool wear features automatically and unify feature extraction and classification of different wear stages together. Experiment results demonstrate that the tool wear monitoring accuracy of the proposed method is 99.29% and the recall of severe wear stage is 99.60% in the robotic helical milling system.

Key words: helical milling    tool wear monitoring    current signal    one-dimensional convolutional neural network (1D CNN)    cost sensitive learning
收稿日期: 2019-11-30 出版日期: 2020-05-05
CLC:  TH 17  
基金资助: 国家自然科学基金青年科学基金资助项目(51805476);国家自然科学基金资助项目(91748204);中央高校基本科研业务费专项资金资助项目
通讯作者: 柯臻铮     E-mail: wanghaijin@zju.edu.cn;kzzcaen@zju.edu.cn
作者简介: 汪海晋(1986—),男,助理研究员,从事航空难加工材料高效加工技术研究. orcid.org/0000-0003-4107-0745. E-mail: wanghaijin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汪海晋
尹宗宇
柯臻铮
郭英杰
董辉跃

引用本文:

汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.

Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.010        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/931

图 1  螺旋铣运动示意图
图 2  硬质合金涂层螺旋铣孔专用刀具
图 3  滑动窗口法进行样本划分示意图
图 4  1D CNN网络结构
操作 卷积核 步长 通道数 激活函数 输出尺寸
卷积1 21 2 32 ReLU 790×32
池化1 2 2 32 ? 395×32
卷积2 16 2 64 ReLU 190×64
池化2 2 2 64 ? 95×64
卷积3 12 2 64 ReLU 42×64
池化3 2 2 64 ? 21×64
卷积4 10 2 128 ReLU 6×128
池化4 2 2 128 ? 3×128
展平 ? ? ? ? 384
随机失活 ? ? ? ? 192
全连接1 ? ? ? ReLU 128
全连接2 ? ? ? Softmax 3
表 1  1D CNN网络结构参数
图 5  机器人螺旋铣系统
图 6  螺旋铣末端执行器
材料 前角/(°) 后角角/(°) 螺旋角/(°) 直径/mm 悬长/mm 总长/mm
YG8 5 10 40 7.5 28 80
表 2  螺旋铣刀具参数
材料 ns/( ${\rm{r}} \cdot {\min ^{ - 1}}$) nr/( ${\rm{r}} \cdot {\min ^{ - 1}}$) vf /( ${\rm{mm}} \cdot {{\rm{s}}^{{\rm{ - 1}}}}$) e/mm
CFRP 10 000 720 1.0 1.0
钛合金 2 000 720 0.4 1.0
表 3  CFRP/Ti叠层螺旋铣加工参数
图 7  正常磨损阶段主轴电流信号
数据集 训练集 测试集
S1 561 374
S2 1 258 833
S3 748 493
合计 2 567 1 700
表 4  电流信号数据集样本数量
实际类别 预测结果
正例 反例
正例 TP(真正例) FN(假反例)
反例 FP(假正例) TN(真反例)
表 5  二分类结果的混淆矩阵
图 8  不同监测模型的准确率
实际类别 预测结果
S1 S2 S3
S1 370 4 0
S2 1 831 1
S3 2 6 485
表 6  代价不敏感1D CNN混淆矩阵
类别 A/% P/% R/% F1/%
S1 99.18 99.20 98.93 99.06
S2 99.18 98.81 99.76 99.28
S3 99.18 99.79 98.38 99.08
表 7  代价不敏感1D CNN评价指标
图 9  螺旋铣刀具3个磨损阶段
实际类别 预测结果
S1 S2 S3
S1 370 3 1
S2 2 827 4
S3 0 2 491
表 8  代价敏感1D CNN混淆矩阵
类别 A/% P/% R/% F1/%
S1 99.29 99.46 98.93 99.21
S2 99.29 99.40 99.28 99.34
S3 99.29 98.99 99.60 99.29
表 9  代价敏感1D CNN评价指标
图 10  学习特征主成分分析
1 PARK K H, BEAL A, KIM D W, et al Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools[J]. Wear, 2011, 271 (11/12): 2826- 2835
2 陈燕, 葛恩德, 傅玉灿, 等 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32 (2): 301- 316
CHEN Yan, GE En-de, FU Yu-can, et al Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32 (2): 301- 316
3 PEREIRA R B D, BRAND?O L C, PAIVA A P, et al A review of helical milling process[J]. International Journal of Machine Tools and Manufacture, 2017, 120: 27- 48
doi: 10.1016/j.ijmachtools.2017.05.002
4 KLANCNIK S, FICKO M, BALIC J, et al Computer vision-based approach to end mill tool monitoring[J]. International Journal of Simulation Modelling, 2015, 14 (4): 571- 583
doi: 10.2507/IJSIMM14(4)1.301
5 GIERLAK P, BURGHARDT A, SZYBICKI D, et al On-line manipulator tool condition monitoring based on vibration analysis[J]. Mechanical Systems and Signal Processing, 2017, 89: 14- 26
doi: 10.1016/j.ymssp.2016.08.002
6 NOURI M, FUSSELL B K, ZINITI B L, et al Real-time tool wear monitoring in milling using a cutting condition independent method[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 1- 13
doi: 10.1016/j.ijmachtools.2014.10.011
7 ZHOU Y Q, XUE W Review of tool condition monitoring methods in milling processes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 2509- 2523
doi: 10.1007/s00170-018-1768-5
8 LIN X K, ZHOU B, ZHU L Sequential spindle current-based tool condition monitoring with support vector classifier for milling process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92 (9?12): 3319- 3328
doi: 10.1007/s00170-017-0396-9
9 PATRA K, JHA A K, SZALAY T, et al Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals[J]. Precision Engineering, 2017, 48: 279- 291
doi: 10.1016/j.precisioneng.2016.12.011
10 沈延斌, 陈岭, 郭浩东, 等 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报: 工学版, 2016, 50 (6): 1141- 1148
SHEN Yan-bin, CHEN Ling, GUO Hao-dong, et al Deep learning based activity recognitionindependent of device orientation and placement[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (6): 1141- 1148
11 ZHAO R, YAN R Q, CHEN Z H, et al Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213- 237
doi: 10.1016/j.ymssp.2018.05.050
12 AGHAZADEH F, TAHAN A, THOMAS M Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98 (9?12): 3217- 3227
doi: 10.1007/s00170-018-2420-0
13 TERRAZAS G, MARTíNEZ-ARELLANO G, BENARDOS P, et al Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach[J]. Journal of Manufacturing and Materials Processing, 2018, 2 (4): 72
doi: 10.3390/jmmp2040072
14 KIRANYAZ S, INCE T, ABDELJABER O, et al. 1-D convolutional neural networks for signal processing applications [C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. United Kingdom: IEEE, 2019: 8360-8364.
15 GIANNAKAKIS G, TRIVIZAKIS E, TSIKNAKIS M, et al. A novel multi-kernel 1D convolutional neural network for stress recognition from ECG [C]// International Conference on Affective Computing and Intelligent Interaction Workshops and Demos. United Kingdom: ACⅡW, 2019: 1-4.
16 ZHANG Y Q, MIYAMORI Y, MIKAMI S C, et al Vibration-based structural state identification by a 1-dimensional convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34 (9): 822- 839
doi: 10.1111/mice.12447
17 WU C Z, JIANG P C, DING C, et al Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53- 61
doi: 10.1016/j.compind.2018.12.001
18 ZHANG C, TAN K C A cost-sensitive deep belief network for imbalanced classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (1): 109- 122
doi: 10.1109/TNNLS.2018.2832648
19 XU G, ZHOU H, CHEN J CNC internal data based incremental cost-sensitive support vector machinemethod for tool breakage monitoring in end milling[J]. Engineering Applications of Artificial Intelligence, 2018, 74: 90- 103
doi: 10.1016/j.engappai.2018.05.007
20 董辉跃, 朱灵盛, 章明, 等 飞机蒙皮切边的螺旋铣削[J]. 浙江大学学报:工学版, 2015, 49 (11): 2033- 2039
DONG Hui-yue, ZHU Ling-sheng, ZHANG Ming, et al Orbital milling method of aircraft skins trimming[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2033- 2039
21 李宏坤, 郝佰田, 代月帮, 等 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报, 2019, 55 (14): 1- 10
LI Hong-kun, HAO Bai-tian, DAI Yue-bang, et al Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55 (14): 1- 10
22 KHAN S H, HAYAT M, BENNAMOUN M, et al Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29 (8): 3573- 3587
[1] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[2] 董辉跃,朱灵盛, 章明, 李少波,罗水均. 飞机蒙皮切边的螺旋铣削方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2033-2039.