交通工程、土木工程 |
|
|
|
|
基于优化DeepSort的前方车辆多目标跟踪 |
金立生1,2( ),华强3,郭柏苍1,谢宪毅1,*( ),闫福刚3,武波涛4 |
1. 燕山大学 车辆与能源学院,河北 秦皇岛 066004 2. 燕山大学 河北省特种运载装备重点实验室,河北 秦皇岛 066004 3. 吉林大学 交通学院,吉林 长春 130022 4. 河北机电职业技术学院 汽车工程系,河北 邢台 054000 |
|
Multi-target tracking of vehicles based on optimized DeepSort |
Li-sheng JIN1,2( ),Qiang HUA3,Bai-cang GUO1,Xian-yi XIE1,*( ),Fu-gang YAN3,Bo-tao WU4 |
1. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China 2. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004, China 3. Transportation College, Jilin University, Changchun 130022, China 4. Department of Automotive Engineering, Hebei Institute of Mechanical and Electrical Technology, Xingtai 054000, China |
引用本文:
金立生,华强,郭柏苍,谢宪毅,闫福刚,武波涛. 基于优化DeepSort的前方车辆多目标跟踪[J]. 浙江大学学报(工学版), 2021, 55(6): 1056-1064.
Li-sheng JIN,Qiang HUA,Bai-cang GUO,Xian-yi XIE,Fu-gang YAN,Bo-tao WU. Multi-target tracking of vehicles based on optimized DeepSort. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1056-1064.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008.973X.2021.06.005
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1056
|
1 |
王世峰, 戴祥, 徐宁 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报: 自然科学版, 2017, 40 (1): 1- 6 WANG Shi-feng, DAI Xiang, XU Ning Overview of driverless car environment perception technology[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2017, 40 (1): 1- 6
|
2 |
李玺, 查宇飞, 张天柱 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24 (12): 2057- 2080 LI Xi, ZHA Yu-fei, ZHANG Tian-zhu Overview of deep learning target tracking algorithms[J]. Chinese Journal of Image and Graphics, 2019, 24 (12): 2057- 2080
doi: 10.11834/jig.190372
|
3 |
储琪. 基于深度学习的视频多目标跟踪算法研究[D]. 合肥: 中国科学技术大学, 2019. CHU Qi. Research on video multi-target tracking algorithm based on deep learning[D]. Hefei: University of Science and Technology of China, 2019.
|
4 |
KIM C, LI F, CIPTADI A, et al. Multiple hypothesis tracking revisited[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4696–4704.
|
5 |
HU H, ZHOU L, GUAN Q, et al An automatic tracking method for multiple cells based on multi-feature fusion[J]. IEEE Access, 2018, 6: 69782- 69793
doi: 10.1109/ACCESS.2018.2880563
|
6 |
LEAL-TAIXÉ L, FERRER C C, SCHINDLER K. Learning by tracking: siamese CNN for robust target association[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas: IEEE, 2016: 33–40.
|
7 |
ZHOU H, OUYANG W, CHENG J, et al Deep continuous conditional random fields with asymmetric inter-object constraints for online multi-object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29 (4): 1011- 1022
|
8 |
ULLAH M, MOHAMMED A K, CHEIKH F A, et al. A hierarchical feature model for multi-target tracking[C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 2612–2616.
|
9 |
SHARMA S, ANSARI J A, MURTHY J K, et al. Beyond pixels: Leveraging geometry and shape cues for online multi-object tracking[C]// Proceedings of the 2018 IEEE International Conference on Mechatronics, Robotics and Automation. Brisbane: IEEE, 2018: 3508–3515.
|
10 |
CHU Q, OUYANG W, LI H, et al. Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]// 2017 IEEE International Conference on Computer Vision. Venie: IEEE, 2017: 4836–4845.
|
11 |
MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks[C]// National Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4225-4232.
|
12 |
MA C, YANG C, YANG F, et al. trajectory factory: tracklet cleaving and re-connection by deep siamese bi-GRU for multiple object tracking[C]// 2018 IEEE International Conference on Multimedia and Expo. San Diego: IEEE, 2018: 1-6.
|
13 |
ZHU J, YANG H, LIU N, et al. Online multi-object tracking with dual matching attention networks[C]// 2018 European Conference on Computer Vision. Munich: [s. n.], 2018: 366–382.
|
14 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and real time tracking with a deep association metric[C]// 2017 IEEE International Conference on Image Processing. [S. l.]: IEEE, 2017: 3645-3649.
|
15 |
解耘宇. 基于扩展卡尔曼滤波的单目视觉轨迹跟踪方法的研究[D]. 北京: 华北电力大学, 2017. XIE Yun-yu. Research on monocular vision trajectory tracking method based on extended Kalman filter[D]. Beijing: North China Electric Power University, 2017.
|
16 |
BISHOP C M. Pattern recognition and machine learning (information science and statistics)[M]. New York: Springer, 2006.
|
17 |
WOJKE N, BEWLEY A. Deep cosine metric learning for person re-identification[C]// IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 748-756.
|
18 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
19 |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks [C]// 2016 Proceedings of the British Machine Vision Conference. York: DBLP, 2016: 1-15.
|
20 |
WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 499-515.
|
21 |
CHARU C A. Neural networks and deep learning[M]. Cham: Springer, 2018: 48-51.
|
22 |
刘鑫辰. 城市视频监控网络中车辆搜索关键技术研究[D]. 北京: 北京邮电大学, 2018. LIU Xin-chen. Research on key technologies of vehicle search in urban video surveillance network[D]. Beijing: Beijing University of Posts and Telecommunications, 2018.
|
23 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
24 |
LIN T Y, DOLLAR P, GIRSHICK R. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
25 |
REDMON J, FARHADI A. YOLO v3: an incremental improvement [EB/OL]. [2020-05-31]. https://arxiv.org/abs/1804.02767.
|
26 |
CHOI J, CHUN D, KIM H. Gaussian YOLO v3: an accurate and fast object detector using localization uncertainty for autonomous driving[C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 502-511.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|