计算机与控制工程 |
|
|
|
|
基于宽度学习系统的fMRI数据分类方法 |
刘嘉诚(),冀俊忠*() |
北京工业大学 信息学部,北京 100124 |
|
Classification method of fMRI data based on broad learning system |
Jia-cheng LIU(),Jun-zhong JI*() |
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
1 |
BELLIVEAU J W, KENNEDY D N, MCKINSTRY R C, et al Functional mapping of the human visual cortex by magnetic resonance imaging[J]. Science, 1991, 254 (5032): 716- 719
doi: 10.1126/science.1948051
|
2 |
COX D D, SAVOY R L Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex[J]. Neuro Image, 2003, 19 (2): 261- 270
|
3 |
CHENG B, LIU M, SHEN D, et al Multi-domain transfer learning for early diagnosis of Alzheimer ’ s disease[J]. Brain, 2012, 135 (5): 1498- 1507
doi: 10.1093/brain/aws059
|
4 |
ROSA M J, PORTUGAL L, HAHN T, et al Sparse network-based models for patient classification using fMRI[J]. Neuroimage, 2015, 105: 493- 506
doi: 10.1016/j.neuroimage.2014.11.021
|
5 |
SACCHET M D, PRASAD G, FOLAND-ROSS L C, et al Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory[J]. Frontiers in Psychiatry, 2015, 6: 21
|
6 |
KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer ’ s disease[J]. Brain Imaging and Behavior, 2016, 10 (3): 799- 817
doi: 10.1007/s11682-015-9448-7
|
7 |
KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Automatic classification of Alzheimer's disease with resting-state fMRI and graph theory [C]// 2014 21th Iranian Conference on Biomedical Engineering (ICBME). Tehran: IEEE, 2014: 252-257.
|
8 |
CHENG B, LIU M, SHEN D, et al Multi-domain transfer learning for early diagnosis of Alzheimer ’ s disease[J]. Neuroinformatics, 2017, 15 (2): 115- 132
doi: 10.1007/s12021-016-9318-5
|
9 |
LI H, XUE Z, ELLMORE T M, et al. Identification of faulty DTI-based sub-networks in autism using network regularized SVM [C]// 2012 9th IEEE International Symposium on Biomedical Imaging(ISBI). Barcelona: IEEE, 2012: 550-553.
|
10 |
DODERO L, MINH H Q, SAN BIAGIO M, et al. Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices [C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn: IEEE, 2015: 42-45.
|
11 |
WEE C Y, YAP P T, SHEN D Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks[J]. CNS Neuroscience and Therapeutics, 2016, 22 (3): 212- 219
doi: 10.1111/cns.12499
|
12 |
ANDERSON A, DOUGLAS P K, KERR W T, et al Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD[J]. Neuroimage, 2014, 102: 207- 219
doi: 10.1016/j.neuroimage.2013.12.015
|
13 |
MITRA J, SHEN K, GHOSE S, et al Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks[J]. Neuroimage, 2016, 129: 247- 259
doi: 10.1016/j.neuroimage.2016.01.056
|
14 |
RICHIARDI J, GSCHWIND M, SIMIONI S, et al Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity[J]. Neuroimage, 2012, 62 (3): 2021- 2033
doi: 10.1016/j.neuroimage.2012.05.078
|
15 |
ARBABSHIRANI M R, KIEHL K, PEARLSON G, et al Classification of schizophrenia patients based on resting-state functional network connectivity[J]. Frontiers in Neuroscience, 2013, 7: 133
|
16 |
KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7482-7491.
|
17 |
MESZLENYI R J, BUZA K, VIDNYANSZKY Z Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture[J]. Frontiers in Neuroinformatics, 2017, 11: 61
doi: 10.3389/fninf.2017.00061
|
18 |
PARISOT S, KTENA S I, FERRANTE E, et al. Spectral graph convolutions for population-based disease prediction [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017.[S.l.]: Springer, 2017: 177-185.
|
19 |
PARISOT S, KTENA S I, FERRANTE E, et al Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer ’ s disease[J]. Medical Image Analysis, 2018, 48: 117- 130
doi: 10.1016/j.media.2018.06.001
|
20 |
HEINSFELD A S, FRANCO A R, CRADDOCK R C, et al Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J]. Neuroimage: Clinical, 2018, 17: 16- 23
doi: 10.1016/j.nicl.2017.08.017
|
21 |
CHEN C L P, LIU Z Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29 (1): 10- 24
|
22 |
YU W, ZHAO C Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (6): 5081- 5091
|
23 |
CHRN C L P, YU D, LIU L Automatic leader-follower persistent formation control for autonomous surface vehicles[J]. IEEE Access, 2018, 7: 12146- 12155
|
24 |
WANG J, ZHAO C. Broad learning system based visual fault diagnosis for electrical equipment thermography images [C]// 2018 Chinese Automation Congress (CAC). Xi'an: IEEE, 2018: 1632-1637.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|