电子、通信与自动控制技术 |
|
|
|
|
基于多线型特征增强网络的架空输电线检测 |
陈雪云1( ),夏瑾1,杜珂1,2 |
1. 广西大学 电气工程学院, 广西 南宁 530004 2. 广西电网有限责任公司南宁供电局, 广西 南宁 530000 |
|
Overhead transmission line detection based on multiple linear-feature enhanced detector |
Xue-yun CHEN1( ),Jin XIA1,Ke DU1,2 |
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China 2. Nanning Power Supply Station ofGuangxi Power Grid Corporation, Nanning 530000, China |
1 |
中国南方电网有限责任公司. 架空输电线路机巡技术[M]. 北京: 中国电力出版社, 2019: 1–3.
|
2 |
吕鹏程. 电力线视频监控方法研究与软件设计[D]. 杭州: 浙江大学, 2018: 1-4. LV Peng-cheng. Video surveillance methods research and software design for power line [D]. Hangzhou: Zhejiang University, 2018: 1–4.
|
3 |
孙实超, 肖潇, 李栋, 等 利用参数关联性的输电线检测方法[J]. 广西大学学报:自然科学版, 2015, 40 (6): 1461- 1468 SUN Shi-chao, XIAO Xiao, LI Dong, et al Power transmission line detection utilizing the relationship between the parame-ters[J]. Journal of Guangxi University: Natural Science Edition, 2015, 40 (6): 1461- 1468
|
4 |
YANG G, ZHAO D, CHANG W, et al, Detection for power transmission line in low-resolution aerial image [C]// 2017 IEEE International Conference on Robotics and Biomimetics. Macau: IEEE, 2017: 1406–1411.
|
5 |
周封, 任贵新. 基于颜色空间变量的输电线图像分类及特征提取[J]. 电力系统保护与控制, 2018, 46(5): 89-98. ZHOU Feng, REN Gui-xin. Image classification and feature extraction of transmission line based on color space variable [J]. Power System Protection and Control, 2018, 46(5): 89-98.
|
6 |
张晓. 无人机输电线巡检图像识别方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2019: 1-27. ZHANG Xiao. Research on image recognition method of UAV transmission line inspection [D]. Harbin: Harbin University of Science and Technology, 2019: 1-27.
|
7 |
ZHAO L, WANG X, YAO H, et al Power line extraction from aerial images using object-based Markov random field with anisotropic weighted penalty[J]. IEEE Access, 2019, 7: 125333- 125356
doi: 10.1109/ACCESS.2019.2939025
|
8 |
PAN C, CAO X B, WU D. Power line detection via back-ground noise removal [C]// 2016 IEEE Global Conference on Signal and Information Processing. Washington DC: IEEE, 2016: 871-875.
|
9 |
LEE S J, YUN J P, CHOI H, et al. Weakly supervised learning with convolutional neural networks for power line loca-lization [C]// 2017 IEEE Symposium Series on Computational Intelligence. Honolulu: IEEE, 2017: 1–8.
|
10 |
YETGIN Ö E, BENLIGIRAY B, GEREK Ö N Power line recognition from aerial images with deep learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55 (5): 2241- 2252
doi: 10.1109/TAES.2018.2883879
|
11 |
LI Y, PAN C, CAO X, et al Power line detection by pyramidal patch classification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 3 (6): 416- 426
|
12 |
CHOI H, KOO G, KIM B J, et al Weakly supervised power line detection algorithm using a recursive noisy label update with refined broken line segments[J]. Expert Systems with Applications, 2020, 165: 113895
|
13 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [DB/OL]. (2014-12-04) [2020-01-10]. https://arxiv.org/pdf/1409.1556.pdf.
|
14 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230–6239.
|
15 |
CHEN L, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848
doi: 10.1109/TPAMI.2017.2699184
|
16 |
LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks [C]// 2016 Fourth International Conference on 3D Vision. Palo Alto: IEEE, 2016 : 239–248.
|
17 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
18 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation [DB/OL]. (2015-05-18) [2020-01-10]. https://arxiv.org/pdf/1505.04597.pdf.
|
19 |
CHEN S, WANG B, TAN X, et al Embedding attention and residual network for accurate salient object detection[J]. IEEE Transactions on Cybernetics, 2020, 50 (5): 2050- 2062
doi: 10.1109/TCYB.2018.2879859
|
20 |
PANG Y, ZHAO X, ZHANG L, et al. Multi-scale interactive network for salient object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9410–9419.
|
21 |
BOJARSKI M, CHOROMANSKA A, CHOROMANSKI K, et al. VisualBackProp: efficient visualization of CNNs for autonomous driving [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 4701–4708.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|