计算机与控制工程 |
|
|
|
|
光伏航拍红外图像的热斑自动检测方法 |
夏杰锋1(),唐武勤1,杨强1,2,*() |
1. 浙江大学 电气工程学院,浙江 杭州 310027 2. 之江实验室,浙江 杭州 310000 |
|
Automatic hot spot detection method for photovoltaic aerial infrared image |
Jie-feng XIA1(),Wu-qin TANG1,Qiang YANG1,2,*() |
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 2. Zhejiang Lab, Hangzhou 310000, China |
1 |
国家能源局. 国家能源局网上新闻发布会文字实录(2012-2019)[EB/OL]. [2021-08-01]. http://www.nea.gov.cn/.
|
2 |
楼卓. 光伏电站自主巡检中的无人机视觉定位算法研究[D]. 杭州: 浙江大学, 2019. LOU Zhuo. Research on UAV visual positioning algorithm in autonomous inspection of photovoltaic power station [D]. Hangzhou: Zhejiang University, 2019.
|
3 |
NIE J, LUO T, LI H Automatic hotspots detection based on UAV infrared images for large-scale PV plant[J]. Electronics Letters, 2020, 56 (19): 993- 995
doi: 10.1049/el.2020.1542
|
4 |
SHERMAN M, GAMMILL M, RAISSI A, et al. Solar UAV for the inspection and monitoring of photovoltaic (PV) systems in solar power plants[C]// AIAA Scitech 2021 Forum. 2021: 1683.
|
5 |
MUOZ J, LORENZO E, MARTÍNEZ-MORENO F, et al An investigation into hot-spots in two large grid-connected PV plants[J]. The Prostate, 2008, 16 (8): 693- 701
|
6 |
蒋琳, 苏建徽, 施永, 等 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41 (8): 180- 184 JIANG Lin, SU Jian-hui, SHI Yong, et al Hot spot detection method of photovoltaic array based on infrared thermal image processing[J]. Journal of Solar Energy, 2020, 41 (8): 180- 184
|
7 |
SU Y, TAO F, JIN J, et al Automated overheated region object detection of photovoltaic module with thermography image[J]. IEEE Journal of Photovoltaics, 2021, 11 (2): 535- 544
doi: 10.1109/JPHOTOV.2020.3045680
|
8 |
位硕权. 基于红外图像的光伏组件热斑智能检测[D]. 杭州: 浙江大学, 2020. WEI Shuo-quan. Intelligent detection of photovoltaic module hot spot based on infrared image [D]. Hangzhou: Zhejiang University, 2020.
|
9 |
TSANAKAS J A, CHRYSOSTOMOU D, BOTSARIS P N Fault diagnosis of photovoltaic modules through image processing and canny edge detection on field thermographic measurements[J]. International Journal of Sustainable Energy, 2015, 34 (6): 351- 372
|
10 |
NGO G C, MACABEBE E Q B. Image segmentation using K-means color quantization and density-based spatial clustering of applications with noise (DBSCAN) for hotspot detection in photovoltaic modules [C]// 2016 IEEE Region 10 Conference (TENCON). Singapore: IEEE, 2016: 1614-1618.
|
11 |
CHEN J, LI Y, LING Q. Hot-spot detection for thermographic images of solar panels[C]// 2020 Chinese Control And Decision Conference (CCDC). Hefei : IEEE, 2020: 4651-4655.
|
12 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 91- 99
|
13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
14 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
15 |
吴涛, 赖菲 基于 LeNet-5 模型的太阳能电池板缺陷识别分类[J]. 热力发电, 2019, 48 (3): 120- 125 WU Tao, LAI Fei Defect identification and classification of solar panels based on lenet-5 model[J]. Thermal Power Generation, 2019, 48 (3): 120- 125
|
16 |
郭梦浩, 徐红伟 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28 (11): 6 GUO Meng-hao, XU Hong-wei Research on infrared thermal image hot spot defect detection based on fast RCNN[J]. Computer System Application, 2019, 28 (11): 6
|
17 |
GRECO A, PIRONTI C, SAGGESE A, et al. A deep learning based approach for detecting panels in photovoltaic plants [C]// Proceedings of the 3rd International Conference on Applications of Intelligent Systems. Las Palmas de Gran Canaria: Acm Digital Library, 2020: 1-7.
|
18 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [C]// International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012: 1097-1105.
|
19 |
CANNY J A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (6): 679- 698
doi: 10.1109/TPAMI.1986.4767851
|
20 |
SUZUKI S, BE K Topological structural analysis of digitized binary images by border following[J]. Computer Vision Graphics and Image Processing, 1985, 30 (1): 32- 46
doi: 10.1016/0734-189X(85)90016-7
|
21 |
ROTHER C, KOLMOGOROV V, BLAKE A GrabCut: interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23 (3): 309- 314
doi: 10.1145/1015706.1015720
|
22 |
IEC Central Office. Photovoltaic (PV) systems: requirements for testing, documentation and maintenance: IEC TS 62446-3[S]. [s. l. ]: IEC, 2017.
|
23 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning. Long Beach: PMLR, 2019: 6105-6114.
|
24 |
Von GIOI R G, JAKUBOWICZ J, MOREL J M, et al LSD: a line segment detector[J]. Image Processing on Line, 2012, 2 (4): 35- 55
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-08-01]. https://doi.org/10.48550/arXiv.1409.1556.
|
26 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
|
27 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
28 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[EB/OL]. [2021-08-01]. https://doi.org/10.48550/arXiv.1602.07360.
|
29 |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2021-08-01]. https://doi.org/10.48550/arXiv.1704.04861.
|
30 |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|