Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1457-1463    DOI: 10.3785/j.issn.1008-973X.2022.07.021
航空航天技术     
数字孪生驱动的机身形状控制方法
赵永胜1,2(),李瑞祥1,2,牛娜娜1,3,赵志勇1,3
1. 北京工业大学 先进制造与智能技术研究所,北京 100020
2. 北京工业大学 先进制造技术北京市重点实验室,北京 100020
3. 北京工业大学 机械工业重型机床数字化设计与测试技术重点实验室,北京 100020
Shape control method of fuselage driven by digital twin
Yong-sheng ZHAO1,2(),Rui-xiang LI1,2,Na-na NIU1,3,Zhi-yong ZHAO1,3
1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing 100020, China
2. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100020, China
3. Machinery Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing Technology, Beijing University of Technology, Beijing 100020, China
 全文: PDF(1277 KB)   HTML
摘要:

针对人工调整机身筒段形状过程中存在的精度低、效率低以及局部过大应力的问题,提出基于数字孪生驱动的机身形状控制方法,搭建融合形状控制策略优化算法和虚拟调试技术的数字孪生系统. 在实时数据的驱动下,实现机身形状控制系统物理空间与虚拟空间的数据交互、动态映射. 研究结合遗传算法和深度学习的形状控制策略优化问题,通过ANSYS批处理多载荷步的方法,验证形状控制策略的可用性,在保持机身筒段应力均衡的状态下调整机身形状. 实验结果表明,利用构建的数字孪生系统和形状控制策略,可以有效地将筒段形状控制精度提高25.8%,将筒段形状控制效率提高414.3%,将局部最大应力减小42.5%.

关键词: 数字孪生机身形状遗传算法深度学习策略优化    
Abstract:

A method of fuselage shape control based on digital twin drive was proposed in order to solve the problems of low precision, low efficiency and excessive local stress of manual adjustment. A digital twin system integrating shape control strategy optimization algorithm and virtual debugging technology was constructed. The digital twin system was driven by real-time data. The data interaction and the dynamic mapping between physical space and virtual space of fuselage shape control system were realized. The optimization problem of shape control strategy combining genetic algorithm and deep learning was analyzed. Then the availability of shape control strategy was verified through the ANSYS batch multi-load step method. The shape of fuselage was adjusted by maintaining the stress balance of fuselage barrel section. The experimental results show that the digital twin system and shape control strategy can effectively improve the control accuracy of fuselage barrel section shape by 25.8%, improve the control efficiency of fuselage barrel section shape by 414.3% and reduce the local maximum stress by 42.5%.

Key words: digital twin    fuselage shape    genetic algorithm    deep learning    strategy optimization
收稿日期: 2021-12-24 出版日期: 2022-07-26
CLC:  V 264  
基金资助: 国家自然科学基金资助项目(52075012);航天伺服驱动与传动技术实验室开放基金资助项目(LASAT-20210103)
作者简介: 赵永胜(1975-),男,教授,博导,从事机床动力学、非线性系统辨识、系统仿真与控制的研究. orcid.org/0000-0002-6592-8833. E-mail: yszhao@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵永胜
李瑞祥
牛娜娜
赵志勇

引用本文:

赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.

Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1457

图 1  机身形状调整数字孪生系统架构
图 2  机身形状控制的流程图
图 3  预测应力与实际应力的对比
图 4  分阶段形状控制策略
图 5  机身形状控制策略优化的流程
图 6  机身筒段形状调整的试验台
图 7  机身变形的示意图
序号 ΔS/mm 序号 ΔS/mm
1 5.44 7 ?13.25
2 6.41 8 ?10.64
3 1.86 9 ?2.33
4 ?3.36 10 1.04
5 ?9.03 11 8.31
6 ?12.87 12 7.36
表 1  机身变形测量的结果
阶段 S1 S2 S3 S4 S5 S6
1 5.03 ?1.12 ?12.91 ?13.35 ?2.27 6.83
2 4.96 ?0.83 ?12.65 ?13.06 ?2.66 6.35
3 4.88 ?0.62 ?12.32 ?12.74 ?2.76 6.06
4 4.85 ?0.57 ?11.83 ?12.28 ?2.65 5.74
5 4.56 ?0.42 ?11.36 ?11.72 ?2.48 5.35
6 4.24 ?0.45 ?10.84 ?11.23 ?2.27 4.93
7 3.98 ?0.54 ?10.38 ?10.75 ?2.07 4.54
8 3.62 ?0.58 ?9.87 ?10.24 ?1.89 4.18
9 3.32 ?0.69 ?9.39 ?9.78 ?1.68 3.77
10 3.14 ?0.64 ?8.84 ?9.29 ?1.45 3.33
11 2.83 ?0.58 ?8.31 ?8.77 ?1.22 2.93
12 2.54 ?0.55 ?7.82 ?8.22 ?1.04 2.56
13 2.39 ?0.46 ?7.35 ?7.74 ?0.86 2.39
14 2.04 ?0.47 ?6.86 ?7.26 ?0.68 2.08
15 1.86 ?0.32 ?6.38 ?6.72 ?0.47 1.87
16 1.67 ?0.33 ?5.82 ?6.23 ?0.38 1.69
17 1.48 ?0.36 ?5.33 ?5.77 ?0.39 1.49
18 1.22 ?0.25 ?4.84 ?5.24 ?0.27 1.26
19 1.04 ?0.28 ?4.32 ?4.76 ?0.25 1.08
20 0.86 ?0.22 ?3.81 ?4.28 ?0.22 0.87
21 0.78 ?0.17 ?3.32 ?3.78 ?0.16 0.78
22 0.69 ?0.16 ?2.83 ?3.27 ?0.15 0.65
23 0.51 ?0.14 ?2.35 ?2.75 ?0.13 0.52
24 0.42 ?0.05 ?1.81 ?2.22 ?0.02 0.46
25 0.34 ?0.13 ?1.35 ?1.74 ?0.08 0.33
26 0.29 0.05 ?0.81 ?1.27 0.07 0.29
27 0.27 0.11 ?0.33 ?0.75 0.16 0.28
28 0.23 0.09 0.16 ?0.25 0.22 0.12
29 0.19 0.13 0.21 0.16 0.16 ?0.08
30 0.13 ?0.09 0.17 0.13 0.08 ?0.18
表 2  机身的形状控制策略
图 8  形状控制策略的仿真环境
序号 ΔS/mm 序号 ΔS/mm
1 0.16 7 0.23
2 0.21 8 0.13
3 0.11 9 ?0.05
4 ?0.07 10 ?0.11
5 ?0.12 11 0.08
6 0.18 12 0.13
表 3  机身变形测量的结果
1 王清运, 刘勇, 徐志刚, 等 大型舱段校正机构设计与仿真分析[J]. 机械设计, 2019, 36 (11): 25- 31
WANG Qing-yun, LIU Yong, XU Zhi-gang, et al Design and simulation analysis of the deformation-correction mechanism for large cabin sections[J]. Journal of Machine Design, 2019, 36 (11): 25- 31
2 WEN Y C, YUE X W, HUNT J H, et al Feasibility analysis of composite fuselage shape control via finite element analysis[J]. Journal of Manufacturing Systems, 2018, 46: 272- 281
doi: 10.1016/j.jmsy.2018.01.008
3 DU J, CAO S S, HUNT J H, et al. Optimal shape control via L∞ loss for composite fuselage assembly [EB/OL]. [2021-12-01]. https://www.webofscience.com/wos/alldb/full-record/WOS:000780697200001.
4 YUE X, WEN Y, HUNT J H, et al Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering, 2018, 140 (4): 041017
5 GRAESSLER I, POEHLER A. Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system [C]// 2017 IEEE International Conference on Industrial Engineering and Engineering Management. Singapore: IEEE, 2017: 289-293.
6 REINER A, SEBASTIAN H, KLAUS S, et al Digital twin technology: an approach for industrie 4.0 vertical and horizontal lifecycle integration[J]. Information Technology, 2018, 60 (3): 125- 132
7 BRENNER B, HUMMEL V Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen–University[J]. Procedia Manufacturing, 2017, 9: 198- 205
doi: 10.1016/j.promfg.2017.04.039
8 PADOVANO A, LONGO F, NICOLETTI L, et al A digital twin based service oriented application for a 4.0 knowledge navigation in the smart Factory – ScienceDirect[J]. IFAC-PapersOnLine, 2018, 51 (11): 631- 636
doi: 10.1016/j.ifacol.2018.08.389
9 CHEN Z, HUANG L Digital twins for information-sharing in remanufacturing supply chain: a review[J]. Energy, 2021, 220: 119712
doi: 10.1016/j.energy.2020.119712
10 HNAL A, SCHNELLHARDT T, WENKLER E, et al. The development of a digital twin for machining processes for the application in aerospace industry [C]// 53rd CIRP Conference on Manufacturing Systems. Amsterdam: [s. n.], 2020, 93: 1399-1404.
11 GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles [C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu: AIAA, 2012: 23-26.
12 CAI Y, CHEN L, CHEN Z Design and implementation of a knowledge engineering-oriented aircraft assembly fault management platform[J]. Advanced Manufacturing Technology, 2020, 63 (4): 96- 100
13 陶飞, 刘蔚然, 张萌, 等 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25 (1): 1- 18
TAO Fei, LIU Wei-ran, ZHANG Meng, et al Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25 (1): 1- 18
14 QI Q, TAO F, HU T, et al Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58 (B): 3- 21
15 TAO F, XIN M A, HU T, et al Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25 (10): 2405- 2418
16 刘蔚然, 陶飞, 程江峰, 等 数字孪生卫星: 概念, 关键技术及应用[J]. 计算机集成制造系统, 2020, 26 (3): 565- 588
LIU Wei-ran, TAO Fei, CHENG Jiang-feng, et al Digital twin satellite: concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26 (3): 565- 588
17 徐慧, 邹孝付, 王海天, 等. 基于数字孪生的化纤长丝落卷作业优化方法及验证[EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/11.59 46.TP.20211112.1723.018.html.
XU Hui, ZOU Xiao-fu, WANG Hai-tian, et al. Optimization method and justification of chemical fiber filament doffing operation based on digital twin [EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/11.59 46.TP.20211112.1723.018.html.
18 张佳朋, 刘检华, 龚康, 等 基于数字孪生的航天器装配质量监控与预测技术[J]. 计算机集成制造系统, 2021, 27 (2): 605- 616
ZHANG Jia-peng, LIU Jian-hua, GONG Kang, et al Spacecraft assembly quality control and prediction technology based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27 (2): 605- 616
19 LI Ming-chao, LU Qiao-rong, BAI Shuo, et al Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredger[J]. Automation in Construction, 2021, 132: 103961
20 XU Zheng, JI Fen-zhu, DING Shui-ting, et al Digital twin-driven optimization of gas exchange system of 2-stroke heavy fuel aircraft engine[J]. Journal of Manufacturing Systems, 2021, 58 (B): 132- 145
21 TAO F, ZHANG M, LIU Y, et al Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67 (1): 169- 172
doi: 10.1016/j.cirp.2018.04.055
22 徐荣飞, 范开国. 数字孪生的电主轴热特性研究[EB/OL]. [2021-10-22]. http://kns.cnki.net/kcms/detail/42.1294.TH.20211022.1335.010.html.
XU Rong-fei, FAN Kai-guo. Research on thermal characteristics of motorized spindle based on digital twin [EB/OL]. [2021-10-22]. http://kns.cnki.net/kcms/detail/42.1294.TH.20211022.1335.010.html.
23 张胜文, 杨凌翮. 数字孪生驱动的离心泵机组故障诊断方法研究[EB/OL]. [2021-10-08]. http://kns.cnki.net/kcms/detail/11.5946.tp.20211004.2143.002.html.
ZHANG Sheng-wen, YANG Ling-he. Fault diagnosis method of centrifugal pump driven by digital twin [EB/OL]. [2021-10-08]. http://kns.cnki.net/kcms/detail/11.5946.tp.20211004.2143.002.html.
24 陶飞, 张萌, 程江峰, 等 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23 (1): 1- 9
TAO Fei, ZHANG Meng, CHENG Jiang-feng, et al Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23 (1): 1- 9
[1] 孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.
[2] 冷柏寒,夏唐斌,孙贺,王皓,奚立峰. 面向可重构制造的数字孪生映射建模与监控仿真[J]. 浙江大学学报(工学版), 2022, 56(5): 843-855.
[3] 何立,庞善民. 结合年龄监督和人脸先验的语音-人脸图像重建[J]. 浙江大学学报(工学版), 2022, 56(5): 1006-1016.
[4] 张雪芹,李天任. 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2022, 56(4): 727-735.
[5] 李琳利,顾复,李浩,顾新建,罗国富,武志强,刚轶金. 仿生视角的数字孪生系统信息安全框架及技术[J]. 浙江大学学报(工学版), 2022, 56(3): 419-435.
[6] 褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
[7] 程若然,赵晓丽,周浩军,叶翰辰. 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报(工学版), 2022, 56(3): 510-519, 530.
[8] 张昕莹,陈璐,杨雯惠. 考虑系统时变效应与预防性维护的平行机调度[J]. 浙江大学学报(工学版), 2022, 56(2): 408-418.
[9] 陈彤,郭剑锋,韩心中,谢学立,席建祥. 基于生成对抗模型的可见光-红外图像匹配方法[J]. 浙江大学学报(工学版), 2022, 56(1): 63-74.
[10] 任松,朱倩雯,涂歆玥,邓超,王小书. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.
[11] 向胜涛,王达. 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报(工学版), 2022, 56(1): 100-110.
[12] 刘兴,余建波. 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报(工学版), 2021, 55(9): 1643-1651.
[13] 陈雪云,黄小巧,谢丽. 基于多尺度条件生成对抗网络血细胞图像分类检测方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1772-1781.
[14] 程浙武,童水光,童哲铭,张钦国. 工业锅炉数字化设计与数字孪生综述[J]. 浙江大学学报(工学版), 2021, 55(8): 1518-1528.
[15] 鞠飞,庄伟超,王良模,刘经兴,王群. 混合动力汽车经济型巡航的车速规划策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1538-1547.