电气工程、机械工程 |
|
|
|
|
基于多尺度特征与注意力机制的轴承寿命预测 |
莫仁鹏(),司小胜*(),李天梅,朱旭 |
火箭军工程大学 导弹工程学院,陕西 西安 710025 |
|
Bearing life prediction based on multi-scale features and attention mechanism |
Ren-peng MO(),Xiao-sheng SI*(),Tian-mei LI,Xu ZHU |
College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China |
引用本文:
莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.020
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1447
|
1 |
乔美英, 汤夏夏, 闫书豪, 等 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2301- 2309 QIAO Mei-ying, TANG Xia-xia, YAN Shu-hao, et al Bearing fault diagnosis based on improved sparse filtering and deep network fusion[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2301- 2309
|
2 |
程卫东, 赵德尊 用于滚动轴承转频估计的 EMD 软阈值降噪算法[J]. 浙江大学学报: 工学版, 2016, 50 (3): 428- 435 CHENG Wei-dong, ZHAO De-zun EMD soft-thresholding denoising algorithm for rolling element bearing rotational frequency estimation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 428- 435
|
3 |
PECHT M. Prognostics and health management of electronics [M]. Hoboken: Wiley, 2008.
|
4 |
李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[EB/OL]. [2021-06-30]. https://doi.org/10.16383/j.aas.c201068. LI Tian-mei, SI Xiao-sheng, LIU Xiang, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data [EB/OL]. [2021-06-30]. https://doi.org/10. 16383/j.aas.c201068.
|
5 |
LU C J, MEEKER W O Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35 (2): 161- 174
doi: 10.1080/00401706.1993.10485038
|
6 |
LIAO G, YIN H, CHEN M, et al Remaining useful life prediction for multi-phase deteriorating process based on Wiener process[J]. Reliability Engineering and System Safety, 2021, 207: 107361
doi: 10.1016/j.ress.2020.107361
|
7 |
SI X S, LI T M, ZANG Q, et al Prognostics for linear stochastic degrading systems with survival measurements[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (4): 3202- 3215
doi: 10.1109/TIE.2019.2908617
|
8 |
王泽洲, 陈云翔, 蔡忠义, 等 基于复合非齐次泊松过程的不完美维修设备剩余寿命预测[J]. 机械工程学报, 2020, 56 (22): 14- 23 WANG Ze-zhou, CHEN Yun-xiang, CAI Zhong-yi, et al Prediction of remaining life of imperfect maintenance equipment based on compound inhomogeneous Poisson process[J]. Journal of Mechanical Engineering, 2020, 56 (22): 14- 23
doi: 10.3901/JME.2020.22.014
|
9 |
KUNDU P, DARPE A K, KULKARNI M S Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 143: 106302
|
10 |
裴洪, 胡昌华, 司小胜, 等 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55 (8): 1- 13 PEI Hong, HU Chang-hua, SI Xiao-sheng, et al Overview of equipment remaining life prediction methods based on machine learning[J]. Journal of Mechanical Engineering, 2019, 55 (8): 1- 13
doi: 10.3901/JME.2019.08.001
|
11 |
唐旭, 徐卫晓, 谭继文, 等. 基于LSTM的滚动轴承剩余使用寿命预测 [J]. 机械设计, 2019, 36(增1): 117-119. TANG Xu, XU Wei-xiao, TAN Ji-wen, et al. Prediction of remaining service life of rolling bearing based on LSTM [J]. Journal of Machine Design, 2019, 36(supple. 1): 117-119.
|
12 |
王玉静, 李少鹏, 康守强, 等 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动. 测试与诊断, 2021, 41 (3): 439- 446 WANG Yu-jing, LI Shao-peng, KANG Shou-qiang, et al Combining CNN and LSTM to predict the remaining service life of rolling bearings[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41 (3): 439- 446
|
13 |
张钢, 田福庆, 佘博, 等 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39 (6): 147- 153 ZHANG Gang, TIAN Fu-qing, SHE Bo, et al A health factor construction method based on information entropy and RBM in specific frequency bands[J]. Journal of Vibration and Shock, 2020, 39 (6): 147- 153
|
14 |
CHENG Y, PENG G, ZHU Z, et al A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919
doi: 10.1016/j.asoc.2019.105919
|
15 |
LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1- 11
doi: 10.1016/j.ress.2017.11.021
|
16 |
LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1508.04025.
|
17 |
郭宝震, 左万利, 王英 采用词向量注意力机制的双路卷积神经网络句子分类模型[J]. 浙江大学学报: 工学版, 2018, 52 (9): 1729- 1737 GUO Bao-zhen, ZUO Wan-li, WANG Ying Two-way convolutional neural network sentence classification model using word vector attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1729- 1737
|
18 |
BAHDANAU D, CHOROWSKI J, SERDYUK D, et al. End-to-end attention-based large vocabulary speech recognition [C]// International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE, 2016: 4945-4949.
|
19 |
雍子叶, 郭继昌, 李重仪 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报: 工学版, 2021, 55 (3): 555- 562 YONG Zi-ye, GUO Ji-chang, LI Chong-yi Weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 555- 562
|
20 |
BA J, MNIH V, KAVUKCUOGLU K. Multiple object recognition with visual attention [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1412.7755.
|
21 |
SONG Y, GAO S, LI Y, et al Distributed Attention-based temporal convolutional network for remaining useful life prediction[J]. IEEE Internet of Things Journal, 2020, 8 (12): 9594- 9602
|
22 |
NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests [C]// IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2012: 1-8.
|
23 |
SOUALHI A, MEDJAHER K, ZERHOUNI N Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64 (1): 52- 62
|
24 |
REN L, CUI J, SUN Y, et al Multi-bearing remaining useful life collaborative prediction: a deep learning approach[J]. Journal of Manufacturing Systems, 2017, 43: 248- 256
doi: 10.1016/j.jmsy.2017.02.013
|
25 |
张继冬, 邹益胜, 邓佳林, 等 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30 (18): 2231- 2235 ZHANG Ji-dong, ZOU Yi-sheng, DENG Jia-lin, et al Bearing remaining life prediction based on fully convolutional neural network[J]. China Mechanical Engineering, 2019, 30 (18): 2231- 2235
|
26 |
孙鑫, 孙维堂 基于多尺度卷积神经网络的轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2020, (10): 168- 171 SUN Xin, SUN Wei-tang Prediction of bearing remaining life based on multi-scale convolutional neural network[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020, (10): 168- 171
|
27 |
韩林洁, 石春鹏, 张建超 基于BiLSTM的滚动轴承剩余使用寿命预测[J]. 制造业自动化, 2020, 42 (5): 47- 50 HAN Lin-jie, SHI Chun-peng, ZHANG Jian-chao Prediction of remaining service life of rolling bearing based on BiLSTM[J]. Manufacturing Automation, 2020, 42 (5): 47- 50
doi: 10.3969/j.issn.1009-0134.2020.05.011
|
28 |
曹正志, 叶春明 基于并联CNN-SE-Bi-LSTM的轴承剩余使用寿命预测[J]. 计算机应用研究, 2021, 38 (7): 2103- 2107 CAO Zheng-zhi, YE Chun-ming Bearing remaining service life prediction based on parallel CNN-SE-Bi-LSTM[J]. Application Research of Computers, 2021, 38 (7): 2103- 2107
|
29 |
WANG Biao, LEI Ya-guo, LI Nai-peng, et al A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69 (1): 401- 412
|
30 |
GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning [C]// International Conference on Machine Learning. New York: [s. n.], 2016: 1050-1059.
|
31 |
牟含笑, 郑建飞, 胡昌华, 等. 基于CDBN与BiLSTM的多元退化设备剩余寿命预测[EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v. 20210510.1354.004.html. MOU Han-xiao, ZHENG Jian-fei, HU Chang-hua, et al. Residual life prediction of multivariate degraded equipment based on CDBN and BiLSTM [EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v.20210510.1354.004.html.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|