智能机器人 |
|
|
|
|
第II类机器人混流装配线的平衡与排序联合决策 |
孙宝凤1(),张新康1,李根道2,*(),刘娇娇1 |
1. 吉林大学 交通学院,吉林 长春 130022 2. 长春理工大学 经济管理学院,吉林 长春 130012 |
|
Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line |
Bao-feng SUN1(),Xin-kang ZHANG1,Gen-dao LI2,*(),Jiao-jiao LIU1 |
1. College of Transportation, Jilin University, Changchun 130022, China 2. School of Economics and Management, Changchun University of Science and Technology, Changchun 130012, China |
引用本文:
孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.
Bao-feng SUN,Xin-kang ZHANG,Gen-dao LI,Jiao-jiao LIU. Joint decision-making of balancing and sequencing for type-II robotic mixed-model assembly line. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1097-1106.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.006
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1097
|
1 |
LEVITIN G, RUBINOVITZ J, SHNITS B A genetic algorithm for robotic assembly line balancing[J]. European Journal of Operational Research, 2006, 168 (3): 811- 825
doi: 10.1016/j.ejor.2004.07.030
|
2 |
ABD K K, ABHARY K, MARIAN R M. Development of an intelligent approach to dynamic scheduling in robotic flexible assembly cells [M]// NUNES E, TELHADA J, CARVALHO M. IAENG transactions on engineering sciences. [S.l.]: CRC Press, 2014: 203-214.
|
3 |
International Federation of Robotics. World robotics 2020 report [R/OL]. (2020-09-24) [2021-09-12]. https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe.
|
4 |
LI Z X, TANG Q H, ZHANG L P Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm[J]. Journal of Cleaner Production, 2016, 135: 508- 522
doi: 10.1016/j.jclepro.2016.06.131
|
5 |
RUBINOVITZ J, BUKCHIN J. Design and balancing of robotic assembly lines [C]// Proceedings of the fourth world conference on robotics research. Pittsburgh: [s. n.], 1991: 1-10.
|
6 |
GAO J, SUN L Y, WANG L H, et al An efficient approach for type II robotic assembly line balancing problems[J]. Computers and industrial engineering, 2009, 56 (3): 1065- 1080
doi: 10.1016/j.cie.2008.09.027
|
7 |
YOOSEFELAHI A, AMINNAYERI M, MOSADEGH H, et al Type II robotic assembly line balancing problem: an evolution strategies algorithm[J]. Journal of Manufacturing Systems, 2012, 31 (2): 139- 151
doi: 10.1016/j.jmsy.2011.10.002
|
8 |
CIL Z A, METE S, AGPAK K Analysis of the type II robotic mixed-model assembly line balancing problem[J]. Engineering Optimization, 2017, 49 (6): 990- 1009
doi: 10.1080/0305215X.2016.1230208
|
9 |
RABBANI M, MOUSAVI Z, FARROKHI-ASL H Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem[J]. Journal of Industrial and Production Engineering, 2016, 33 (7): 472- 484
doi: 10.1080/21681015.2015.1126656
|
10 |
ZHANG Z K, TANG Q H, LI Z X, et al Modelling and optimization of energy-efficient U-shaped robotic assembly line balancing problems[J]. International Journal of Production Research, 2019, 57 (7): 5520- 5537
|
11 |
ZHANG Z K, TANG Q H, ZHANG L P Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem[J]. Journal of Cleaner Production, 2019, 215: 744- 756
doi: 10.1016/j.jclepro.2019.01.030
|
12 |
ZHANG B K, XU L Y, ZHANG J Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach[J]. Applied Soft Computing, 2021, 98: 106739
doi: 10.1016/j.asoc.2020.106739
|
13 |
NILAKANTAN J M, LI Z X, TANG Q H, et al Multi-objective cooperative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems[J]. Journal of Cleaner Production, 2017, 156: 124- 136
doi: 10.1016/j.jclepro.2017.04.032
|
14 |
周炳海, 康雪云 考虑能效的多机器人协同装配线平衡方法[J]. 北京理工大学学报, 2019, 39 (3): 276- 282 ZHOU Bing-hai, KANG Xue-yun Multi-robot cooperative assembly line balancing method based on energy efficiency[J]. Transactions of Beijing Institute of Technology, 2019, 39 (3): 276- 282
|
15 |
NILAKANTAN J M, HUANG G Q, PONNAMBALAM S G An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems[J]. Journal of Cleaner Product, 2015, 90: 311- 325
doi: 10.1016/j.jclepro.2014.11.041
|
16 |
ZHANG B K, XU L Y, ZHANG J A multi-objective cellular genetic algorithm for energy-oriented balancing and sequencing problem of mixed-model assembly line[J]. Journal of Cleaner Production, 2020, 244: 118845
doi: 10.1016/j.jclepro.2019.118845
|
17 |
MOUZON G, YILDIRIM M B A framework to minimize total energy consumption and total tardiness on a single machine[J]. International Journal of Sustainable Engineering, 2008, 1 (2): 105- 116
doi: 10.1080/19397030802257236
|
18 |
谢素芬 基于PROFINET的节能技术PROFIenergy——节能技术新趋势[J]. 仪器仪表标准化与计量, 2010, (6): 36- 39 XIE Su-fen Energy-saving technology PROFIenergy based on PROFINET new trend of energy-saving technology[J]. Instrumentation Standardization and Metrology, 2010, (6): 36- 39
doi: 10.3969/j.issn.1672-5611.2010.06.011
|
19 |
SCHOLL A. Balancing and Sequencing of Assembly Lines [M]. Heidelberg: Springer-Verlag, 1999.
|
20 |
LI Z X, JANARDHANAN M N, TANG Q H, et al Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line[J]. Engineering Optimization, 2018, 50 (5): 877- 893
doi: 10.1080/0305215X.2017.1351963
|
21 |
RUBINOVITZ J, LEVITIN G Genetic algorithm for assembly line balancing[J]. International Journal of Production Economics, 1995, 41 (1/3): 343- 354
|
22 |
DAVIS L. Applying adaptive algorithms to epistatic domains [EB/OL]. [2021-09-12]. https://www.ijcai.org/Proceedings/85-1/Papers/029.pdf.
|
23 |
KIM Y K, KIM S J, KIM J Y. Mixed model line balancing and scheduling [DS/OL]. [2021-09-12]. https://assembly-line-balancing.de/further-data-sets/mixed-model-line-balancing-and-scheuduling/
|
24 |
MONTGOMERY D C. Design and analysis of experiments [M]. 9th ed. New York: Wiley, 2017.
|
25 |
ZITZLER E, THIELE L Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (4): 257- 271
doi: 10.1109/4235.797969
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|