计算机与控制工程 |
|
|
|
|
基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法 |
郝琨1(),王阔1,王贝贝2,*() |
1. 天津城建大学 计算机与信息工程学院,天津 300384 2. 天津城建大学 控制与机械工程学院,天津 300384 |
|
Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3 |
Kun HAO1(),Kuo WANG1,Bei-bei WANG2,*() |
1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China 2. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China |
1 |
YANG H, LIU P, HU Y, et al Research on underwater object recognition based on YOLOv3[J]. Microsystem Technologies, 2021, 27 (4): 1837- 1844
doi: 10.1007/s00542-019-04694-8
|
2 |
徐凤强, 董鹏, 王辉兵, 等 基于水下机器人的海产品智能检测与自主抓取系统[J]. 北京航空航天大学学报, 2019, 45 (12): 2393- 2402 XU Feng-qiang, DONG Peng, WANG Hui-bing, et al Intelligent detection and autonomous capture system of seafood based on underwater robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (12): 2393- 2402
doi: 10.13700/j.bh.1001-5965.2019.0377
|
3 |
XU F, WANG H, PENG J, et al Scale-aware feature pyramid architecture for marine object detection[J]. Neural Computing and Applications, 2021, 33 (8): 3637- 3653
doi: 10.1007/s00521-020-05217-7
|
4 |
WANG H, SHI Y, YUE Y, et al. Study on freshwater fish image recognition integrating SPP and DenseNet network[C]// The IEEE International Conference on Mechatronics and Automation. Beijing: ICMA, 2020: 564-569.
|
5 |
ZHAO Z, LIU Y, SUN X, et al Composited fishnet: fish detection and species recognition from low-quality underwater videos[J]. IEEE Transactions on Image Processing, 2021, 30: 4719- 4734
doi: 10.1109/TIP.2021.3074738
|
6 |
SALMAN A, SIDDIQUI S, SHAFAIT F, et al Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system[J]. ICES Journal of Marine Science, 2020, 77 (4): 1295- 1307
doi: 10.1093/icesjms/fsz025
|
7 |
WONG A, FAMUORI M, SHAFIEE M, et al. Yolo nano: a highly compact you only look once convolutional neural network for object detection [EB/OL]. (2019-10-03) [2021-8-12]. https://arxiv.org/abs/1910.01271.
|
8 |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: CVPR, 2020: 1580-1589.
|
9 |
袁哲明, 袁鸿杰, 言雨璇, 等 基于深度学习的轻量化田间昆虫识别及分类模型[J]. 吉林大学学报:工学版, 2021, 51 (3): 1131- 1139 YUAN Zhe-ming, YUAN Hong-jie, YAN Yu-xuan, et al Automatic recognition and classification of field insects based on lightweight deep learning model[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (3): 1131- 1139
|
10 |
孟庆宽, 张漫, 杨晓霞, 等 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51 (12): 238- 245 MENG Qing-kuan, ZHANG Man, YANG Xiao-xia, et al Recognition of maize seedling and weed based on light weight convolution and feature fusion[J]. Transactions of The Chinese Society for Agricultural Machinery, 2020, 51 (12): 238- 245
doi: 10.6041/j.issn.1000-1298.2020.12.026
|
11 |
ZHANG X, KANG X, FENG N, et al Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector[J]. Computers and Electronics in Agriculture, 2020, 178: 105754
doi: 10.1016/j.compag.2020.105754
|
12 |
HUANG S, HE Y, CHEN X M-YOLO: a nighttime vehicle detection method combining Mobilenet v2 and YOLO v3[J]. Journal of Physics: Conference Series, 2021, 1883 (1): 012094
doi: 10.1088/1742-6596/1883/1/012094
|
13 |
GU Y, GE B Research on lightweight convolutional neural network in garbage classification[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781 (3): 032011
doi: 10.1088/1755-1315/781/3/032011
|
14 |
ZHANG, X, LI N, ZHANG R. An improved lightweight network MobileNetv3 based YOLOv3 for pedestrian detection[C]// The IEEE International Conference on Consumer Electronics and Computer Engineering. Guangzhou: ICCECE, 2021: 114-118.
|
15 |
CAI K, MIAO X, WANG W, et al A modified YOLOv3 model for fish detection based on MobileNet v1 as backbone[J]. Aquacultural Engineering, 2020, 91: 102117
doi: 10.1016/j.aquaeng.2020.102117
|
16 |
QIU Z, YAO Y, ZHONG M. Underwater sea cucumbers detection based on pruned SSD[C]// The IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Chongqing: IMCEC, 2019: 738-742.
|
17 |
强伟, 贺昱曜, 郭玉锦, 等 基于改进SSD 的水下目标检测算法研究[J]. 西北工业大学学报, 2020, 38 (4): 747- 754 QIANG Wei, HE Yu-yao, GUO Yu-jin, et al Research on underwater target detection algorithm based on improved SSD[J]. Journal of Northwestern Polytechnical University, 2020, 38 (4): 747- 754
doi: 10.3969/j.issn.1000-2758.2020.04.008
|
18 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: CVPR, 2016: 779-788.
|
19 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// The IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: CVPR , 2017: 6517-6525.
|
20 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2021-8-12]. https://arxiv.org/abs/1804.02767.
|
21 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: CVPR, 2018: 7132-7141.
|
22 |
LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming [C]// The IEEE International Conference on Computer Vision. Shenzhen: ICCV, 2017: 2736-2744.
|
23 |
WOO S, PARK J, LEE J, et al. Cbam: convolutional block attention module [C]// The European Conference on Computer Vision. Munich: ECCV, 2018: 3-19.
|
24 |
CUTTER G, STIERHOFF K, ZENG J. Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild[C]// The IEEE Winter Conference on Applications of Computer Vision Workshops. Waikoloa: WACVW, 2015: 57-62.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|