自动化技术、计算机技术 |
|
|
|
|
基于注意力和自适应权重的车辆重识别算法 |
苏育挺(),陆荣烜,张为*() |
天津大学 电气自动化与信息工程学院,天津 300072 |
|
Vehicle re-identification algorithm based on attention mechanism and adaptive weight |
Yu-ting SU(),Rong-xuan LU,Wei ZHANG*() |
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
1 |
LIU X, WU L, MA H, et al. Large-scale vehicle re-identification in urban surveillance videos [C]// Proceedings of the IEEE International Conference on Multimedia and Expo. Seattle: IEEE, 2016: 1-6.
|
2 |
ZAPLETAL D, HEROUT A. Vehicle re-identification for automatic video traffic surveillance [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. California: IEEE, 2016: 1568-1574.
|
3 |
CORMIER M, SOMMER L W, TEUTSCH M. Low resolution vehicle re-identification based on appearance features for wide area motion imagery [C]// Proceedings of the IEEE Winter Applications of Computer Vision Workshops. New York: IEEE, 2016: 1-7.
|
4 |
LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 1487-1495.
|
5 |
ZHENG Z, RUAN T, WEI Y, et al. VehicleNet: learning robust visual representation for vehicle re-identification [C]// Proceedings of the IEEE Transactions on Multimedia. New York: IEEE, 2021: 2683-2693.
|
6 |
JIN X, LAN C, ZENG W, et al. Uncertainty-aware multi-shot knowledge distillation for image-based object re-identification [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 11165-11172.
|
7 |
KIM Y, PARK W, ROH M C, et al. GroupFace: learning latent groups and constructing group-based representations for face recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 5620-5629.
|
8 |
谢秀珍, 罗志明, 连盛, 等 一种融合表观与属性信息的车辆重识别方法[J]. 厦门大学学报: 自然科学版, 2021, 60 (1): 72- 79 XIE Xiu-zhen, LUO Zhi-ming, LIAN Sheng, et al A vehicle re-identification method by fusing the vehicle appearance and attribute information[J]. Journal of Xiamen University: Natural Science Edition, 2021, 60 (1): 72- 79
|
9 |
CHEN T S, LIU C T, WU C W. et al. Orientation-aware vehicle re-identification with semantics-guided part attention network [C]// European Conference on Computer Vision. Amsterdam: Elsevier, 2020: 330–346.
|
10 |
刘晗煜, 黄宏恩, 郑世宝 基于视角一致性三元组损失的车辆重识别技术[J]. 测控技术, 2021, 40 (8): 47- 53 LIU Han-yu, HUANG Hong-en, ZHENG Shi-bao View consistency triplet loss for vehicle re-identification[J]. Measurement and Control Technology, 2021, 40 (8): 47- 53
doi: 10.19708/j.ckjs.2021.08.009
|
11 |
NGUYEN B X, NGUYEN B D, DO T, et al. Graph-based person signature for person re-identifications [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2021: 3487-3496.
|
12 |
HUYNH S V, NGUYEN N H, NGUYEN N T, et al. A strong baseline for vehicle re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2021: 4142-4149.
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
14 |
WU Y, HE K Group normalization[J]. International Journal of Computer Vision, 2018, 128: 742- 755
|
15 |
PRANNAY K, PIOTR T, CHEN W, et al. Supervised contrastive learning [EB/OL]. [2022-04-20]. https://arxiv.org/abs/2004.11362.
|
16 |
LIU X, LIU W, MEI T, et al PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance[J]. IEEE Transactions on Multimedia, 2019, 20 (3): 645- 658
|
17 |
LIU H, TIAN Y, WANG Y, et al. Deep relative distance learning: tell the difference between similar vehicles [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2167-2175.
|
18 |
KINGMA D, BA J. Adam: a method for stochastic optimization [C]// International Conference on Learning Representations. San Diego: [s. n.], 2015: 1412-1426.
|
19 |
WANG Z, TANG L, LIU X, et al. Orientation invariant feature embedding and spatial temporal regularization for vehicle reidentification [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 832-837.
|
20 |
YI Z, LING S. Viewpoint-aware attentive multi-view inference for vehicle re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2017: 6489-6498.
|
21 |
HE B, LI J, ZHAO Y, et al. Part-regularized near-duplicate vehicle re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3992-4000.
|
22 |
LIN W, Y LI, YANG X, et al. Multi-view learning for vehicle re-identification [C]// IEEE International Conference on Multimedia and Expo. Shanghai: IEEE, 2019: 832-837.
|
23 |
MENG D, LI L, LIU X, et al. Parsing-based view-aware embedding network for vehicle re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 7101-7110.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|