|
|
面向节点分类的图神经网络节点嵌入增强模型 |
曾菊香(),王平辉*(),丁益东,兰林,蔡林熹,管晓宏 |
西安交通大学 电子与信息工程学部,陕西 西安 710049 |
|
Graph neural network based node embedding enhancement model for node classification |
Ju-xiang ZENG(),Ping-hui WANG*(),Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN |
Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China |
引用本文:
曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
Ju-xiang ZENG,Ping-hui WANG,Yi-dong DING,Lin LAN,Lin-xi CAI,Xiao-hong GUAN. Graph neural network based node embedding enhancement model for node classification. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 219-225.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.001
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I2/219
|
1 |
WU Z, PAN S, CHEN F, et al A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 32 (1): 4- 24
|
2 |
YAO L, MAO C, LUO Y. Graph convolutional networks for text classification [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 7370-7377.
|
3 |
ZHANG Z, CUI P, ZHU W Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (1): 249- 270
doi: 10.1109/TKDE.2020.2981333
|
4 |
AKOGLU L, TONG H, KOUTRA D Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29 (3): 626- 688
doi: 10.1007/s10618-014-0365-y
|
5 |
WANG P, XU B, XU J, et al Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J]. Neurocomputing, 2016, 174: 806- 814
doi: 10.1016/j.neucom.2015.09.096
|
6 |
SHCHUR O, MUMME M, BOJCHEVSKI A, et al. Pitfalls of graph neural network evaluation [EB/OL]. [2022-04-02]. https://arxiv.org/abs/1811.05868.
|
7 |
ZHU D, ZHANG Z, CUI P, et al. Robust graph convolutional networks against adversarial attacks [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019.
|
8 |
HENAFF M, BRUNA J, LECUN Y. Deep convolutional networks on graph-structured data [EB/OL]. [2022-04-02]. http://arxiv.org/abs/1506.05163.
|
9 |
ZHANG Y, PAL S, COATES M J, et al. Bayesian graph convolutional neural networks for semi-supervised classification [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 5829-5836.
|
10 |
HAMILTON W, YING Z, LESKOVEC J. Inductive Representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2017: 1024-1034.
|
11 |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]// Proceedings of International Conference on Learning Representations 2018. Vancouver: [s.n.], 2018.
|
12 |
DUVENAUD D K, MACLAURIN D, IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2015: 2224-2232.
|
13 |
NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 2014-2023.
|
14 |
WANG X, JI H, SHI C, et al. Heterogeneous graph attention network [C]// Proceedings of the World Wide Web Conference 2019. New York: ACM, 2019: 2022-2032.
|
15 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [C]// Proceedings of the 31st International Conference on Machine Learning. New York: ACM, 2014.
|
16 |
SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80
doi: 10.1109/TNN.2008.2005605
|
17 |
DEFFERRARD M E L, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates, Inc., 2016: 3844-3852.
|
18 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// Proceedings of International Conference on Learning Representations 2017. Toulon: [s.n.], 2017.
|
19 |
SEN P, NAMATA G, BILGIC M, et al Collective classification in network data[J]. AI Magazine, 2008, 29 (3): 93- 106
doi: 10.1609/aimag.v29i3.2157
|
20 |
ABADI M I N, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [C]// Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. Berkeley: USENIX, 2016: 265-283.
|
21 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
|
22 |
VAN DER MAATEN L, HINTON G E Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (86): 2579- 2605
|
23 |
VERMA V, QU M, KAWAGUCHI K, et al. GraphMix: improved training of GNNs for semi-supervised learning [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [s.l.]: AAAI, 2021: 10024-10032.
|
24 |
ZENG J, WANG P, LAN L, et al. Accurate and scalable graph neural networks for billion-scale graphs [C]// Proceedings of the 38th International Conference on Data Engineering. Kuala Lumpur: IEEE, 2022: 110-122.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|