Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 10-20    DOI: 10.3785/j.issn.1008-973X.2023.01.002
机械与能源工程     
基于LSTM与牛顿迭代的两轴系统轮廓误差控制
黄华1(),赵秋舸1,何再兴2,李嘉然1
1. 兰州理工大学 机电工程学院,甘肃 兰州 730050
2. 浙江大学 机械工程学院,浙江 杭州 310027
Contour error control of two-axis system based on LSTM and Newton iteration
Hua HUANG1(),Qiu-ge ZHAO1,Zai-xing HE2,Jia-ran LI1
1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2998 KB)   HTML
摘要:

针对轮廓误差影响运动系统精度的问题,提出结合长短期记忆神经网络(LSTM)和牛顿迭代法对轮廓误差进行预测、通过转换任务坐标系对轮廓误差进行补偿的方法. 在运动平台上提取特征轮廓与数据,将牛顿迭代法应用于对轮廓误差的计算,通过计算出的轮廓误差对优化后的LSTM神经网络进行训练,建立更准确的轮廓误差预测模型. 通过转换任务坐标系,将预测的轮廓误差作为前馈补偿到参考轮廓中,提高轮廓控制性能. 通过试验对比PID、迭代法和神经网络法,利用随机NRBUS轨迹验证泛化性,表明提出的方法能够有效地预测并控制轮廓误差,在精密运动控制领域有良好的应用前景.

关键词: 两轴运动控制轮廓误差长短期记忆神经网络前馈补偿    
Abstract:

An approach of contour error prediction based on long short-term memory neural network (LSTM) and Newton iteration and the contour error compensation by transforming the task coordinate system was proposed in order to address the problem that the accuracy of two-axis motion was affected by contour error. The feature contour and data were extracted from the control system of the two-axis motion platform, and the contour error was obtained by Newton’s method, which was employed as the training data of LSTM neural network. Then a more accurate prediction model of contour error was obtained. The predicted contour error was compensated to the reference contour through feedforward control by transforming the task coordinate system so as to improve the contour control performance. The random NRBUS curve was used to verify its generalization by comparing PID, ILC and neural network. The experimental results show that the proposed approach can effectively predict and control the contour error, and has good potential application value in the precision motion control.

Key words: two-axis motion control    contour error    long short-term memory neural network    feedforward compensation
收稿日期: 2022-08-09 出版日期: 2023-01-17
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(51965037,51565030)
作者简介: 黄华(1978—),男,副教授,博导,从事数控技术的研究. orcid.org/0000-0002-4945-5888. E-mail: hh318872@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄华
赵秋舸
何再兴
李嘉然

引用本文:

黄华,赵秋舸,何再兴,李嘉然. 基于LSTM与牛顿迭代的两轴系统轮廓误差控制[J]. 浙江大学学报(工学版), 2023, 57(1): 10-20.

Hua HUANG,Qiu-ge ZHAO,Zai-xing HE,Jia-ran LI. Contour error control of two-axis system based on LSTM and Newton iteration. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 10-20.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.002        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/10

图 1  单轴伺服系统动力学模型
图 2  进给伺服系统的控制模型
图 3  两轴运动系统
图 4  两轴平台轮廓误差的示意图
图 5  轮廓误差估计的仿真试验
${{i} }$ $\|{\boldsymbol{\varepsilon } }({ {\hat {{t} } } })\|$ ${{i} }$ $\| {\boldsymbol{\varepsilon } }({ {\hat {{t} } } })\|$
1 0.918 7 6 0.796 4
2 0.861 3 7 0.795 9
3 0.820 9 8 0.795 4
4 0.798 8 9 0.795 4
5 0.797 1 10 0.795 4
表 1  轮廓误差计算的仿真结果
图 6  LSTM神经网络框架
图 7  LSTM神经网络训练的流程图
图 8  随机NURBS A
图 9  不同训练特征下的LSTM神经网络轮廓误差预测偏差
特征 ${{\varepsilon } }{'_{\max } }$/μm ${{\varepsilon } }{'_{ {{\rm{rms}}} } }$/μm
A 49.4 25.0
B 24.9 12.6
C 10.4 5.0
表 2  不同训练特征下LSTM神经网络轮廓误差预测效果的对比
图 10  转换任务坐标系的示意图
图 11  轮廓误差控制框图
图 12  轮廓误差总体控制框图
图 13  轮廓误差估计偏差的对比
图 14  随机NURBS B
图 15  轮廓误差的对比
方法 ${\left| { { {\boldsymbol{\varepsilon } }_{\rm{d}}} } \right|_{ \rm{rms} } }$/μm ${\left| { { {\boldsymbol{\varepsilon } }_{\rm{d}}} } \right|_{ {\max} } }$/μm
C1 109.1 489
C2 83.5 468
C3 93.7 150
C4 11.4 195
C5 8.2 76.6
C6 9.1 75.4
表 3  轮廓误差控制的对比
1 CHEN Z, LI C, YAO B, et al Integrated coordinated/synchronized contouring control of a dual-linear-motor-driven gantry[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (5): 3944- 3954
doi: 10.1109/TIE.2019.2921287
2 LI J, QI C, LI Y, et al Prediction and compensation of contour error of CNC systems based on LSTM neural network[J]. IEEE/ASME Transactions on Mechatronics, 2021, 3 (99): 1- 8
3 LIAO J, HUANG F, CHEN Z, et al Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy[J]. International Journal of Intelligent Robotics and Applications, 2019, 3 (2): 115- 130
doi: 10.1007/s41315-019-00090-7
4 WANG Z, HU C, ZHU Y, et al Newton-ILC contouring error estimation and coordinated motion control for precision multi-axis systems with comparative experiments[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (2): 1470- 1480
5 KOREN Y Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems Measurement and Control, 1980, 102 (4): 265- 272
doi: 10.1115/1.3149612
6 胡楚雄, 王庆丰, 姚斌 基于全局任务坐标系的精密轮廓运动控制研究[J]. 机械工程学报, 2012, 48 (20): 79- 88
HU Chu-xiong, WANG Qing-feng, YAO Bin Research on precision contour motion control based on global task coordinate system[J]. Journal of Mechanical Engineering, 2012, 48 (20): 79- 88
7 CHEN Z, YAO B, WANG Q Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes[J]. IEEE Transactions on Industrial Informatics, 2012, 9 (2): 965- 973
8 ZHANG D, CHEN Y, CHEN Y Iterative precompensation scheme of tracking error for contouring error reduction[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87 (9): 3279- 3288
9 CHEN S, WEN J. Adaptive neural trajectory tracking control for flexible-joint robots with online learning [C]// IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 2358-2364.
10 HUO F, POO A N Nonlinear autoregressive network with exogenous inputs based contour error reduction in CNC machines[J]. International Journal of Machine Tools and Manufacture, 2013, 67 (1): 45- 52
11 HU C, OU T, CHANG H, et al Deep GRU neural-network prediction and feedforward compensation for precision multi-axis motion control systems[J]. IEEE/ASME Transactions on Mechatronics, 2020, 1 (99): 1377- 1388
12 FU S, LU H, XU Y, et al. Research on contour error control based on cross-coupled structure [C]//IEEE International Conference on Information and Automation. Wuyishan: IEEE, 2018: 150-154.
[1] 王飞,徐维祥. 基于LSTM神经网络改进的路阻函数模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1065-1071.
[2] 李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.
[3] 劳立明, 陈英龙, 赵玉刚, 周华. 跟踪微分器的等效线性分析及优化[J]. 浙江大学学报(工学版), 2018, 52(2): 224-232.
[4] 邓学磊, 杨灿军, 毕千, 范锦昌, 尚伟燕. 舵机驱动的足式机器人腿部运动性能优化策略[J]. 浙江大学学报(工学版), 2015, 49(4): 638-643.
[5] 熊义,魏建华,冯瑞琳,张强. 基于全局任务坐标系的二轴电液系统轮廓控制[J]. 浙江大学学报(工学版), 2015, 49(11): 2063-2072.
[6] 龚大成 吕福在 项占琴 潘晓弘. 非圆车削用GMA迟滞逆补偿控制方法[J]. J4, 2008, 42(11): 1957-1961.