Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 569-576    DOI: 10.3785/j.issn.1008-973X.2018.03.020
电气工程     
基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略
李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱
浙江大学 电气工程学院, 浙江 杭州 310027
VSG power oscillation suppression strategies based on phase compensation and cross feedforward compensation
LI Xin, XIAO Long, LIU Guo-liang, SHAO Yu-ting, CHEN Guo-zhu
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1679 KB)   HTML
摘要:

针对虚拟同步发电机(VSG)潜在的同步频率处功率振荡问题,建立二阶VSG的小信号动态模型,分析VSG输出功率与虚拟电动势、功角的关系,指出较小的线路阻抗比R/X使控制系统在同步频率处存在谐振点,且引入的180°的滞后相位降低了系统稳定性,促进了功率振荡的产生.通过建立VSG控制环的频域模型,分析小线路阻抗比时功率控制参数对功率振荡的影响,给出功率耦合与稳定性的关系.根据功率振荡的产生机理及模型分析,引入相位补偿和交叉前馈补偿的2种补偿策略来抑制同步频率处的功率振荡.通过搭建的仿真模型,验证VSG存在的功率振荡现象以及2种补偿抑制策略的有效性.

Abstract:

A small signal dynamic model was derived for the second-order virtual synchronous generator (VSG) model to analyze the relationship between VSG output power and virtual electromotive force/power angle, aiming at the power oscillation problem at synchronous frequency of VSG. There was resonance point at synchronous frequency caused by the small line impendence ratio R/X. Furthermore, the 180° phase lag was introduced at the resonance point, which reduced the control stability and facilitated the power oscillation. Moreover, the frequency domain model of VSG control was established to analyze the influence of power control parameters on power oscillation at small line impedance ratio, and the relationship between power coupling and the stability of control system was given. According to the mechanism of power oscillation and the analysis of frequency domain model, two kinds of compensation strategies, phase compensation and cross feedforward compensation, were proposed to suppress the power oscillation at the synchronous frequency. Finally, the power oscillation phenomenon and the effectiveness of the two suppression strategies are verified through computer simulation.

收稿日期: 2017-05-15 出版日期: 2018-09-11
CLC:  TM464  
基金资助:

国家自然科学基金资助项目(51177147).

通讯作者: 陈国柱,男,教授,博导.orcid.org/0000-0002-4565-090X.     E-mail: gzchen@zju.edu.cn
作者简介: 李新(1993-),男,博士生,从事新能源发电并网及控制技术、储能技术研究.orcid.org/0000-0002-8637-6089.E-mail:xin_li@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.

LI Xin, XIAO Long, LIU Guo-liang, SHAO Yu-ting, CHEN Guo-zhu. VSG power oscillation suppression strategies based on phase compensation and cross feedforward compensation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 569-576.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.020        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/569

[1] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14. WANG Cheng-shan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2):10-14.
[2] CARRASCO J M, FRANQUEDO L G, BIALASIEWICA J T, et al. Power-electronic systems for the grid integration of renewable energy sources:a survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4):1002-1016.
[3] SHARMA R, SINGH M, JAIN D K. Power system stability analysis with large penetration of distributed generation[C]//20146th IEEE Power India International Conference. Delhi:PⅡCON, 2014:1-6.
[4] GHEPRGHE S, GOLOVANOV N, CRISTIAN G, et al. The connection of renewable sources to the grid. Influences and power quality issues[C]//10th International Symposium on Advanced Topics in Electrical Engineering. Bucharest:ATEE, 2017:313-318.
[5] 郑天文, 陈来军, 陈天一,等. 虚拟同步发电机技术及展望[J].电力系统自动化,2015,39(21):165-171. ZHENG Tian-wen, CHEN Lai-jun, CHEN Tian-yi, et al. Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015, 39(21):165-171.
[6] ZHONG Q C, WEISS G. Synchronverters:Inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4):1259-1266.
[7] MA Y W, CAO W C, LIU Y, et al. Virtual synchronous generator control of full converter wind turbines with short term energy storage[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1):8821-8830.
[8] 张兴, 朱德斌, 徐海珍. 分布式发电中的虚拟同步发电机技术[J].电源学报,2012, 10(3):1-6. ZHANG Xing, ZHU De-bin, XU Hai-zhen. Review of virtual synchronous generator technology in distributed generation[J]. Journal of Power Supply, 2012, 10(3):1-6.
[9] 吕志鹏,盛万兴,钟庆昌,等. 虚拟同步发电机及其在微电网中的应用[J].中国电机工程学报,2014,34(16):2591-2603. LV Zhi-peng, SHENG Wan-xing, ZHONG Qing-chang, et al. Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16):2591-2603.
[10] 吴恒,阮新波,杨东升,等. 虚拟同步发电机功率环的建模与参数设计[J]. 中国电机工程学报,2015,35(24):6508-6518. WU Heng, RUAN Xin-bo, YANG Dong-sheng, et al. Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24):6508-6518.
[11] 孟建辉,王毅,石新春,等. 基于虚拟同步发电机的分布式逆变电源控制策略及参数分析[J]. 电工技术学报,2014,29(12):1-10. MENG Jian-hui, WANG Yi, SHI Xin-chun, et al. Control strategy and parameter analysis of distributed inverters based on VSG[J]. Transactions of China Electrotechnical Society, 2014, 29(12):1-10.
[12] ZHENG T W, CHEN L J, ZHANG H N, et al. Control strategy for suppressing power oscillation of virtual synchronous generator under unbalanced grid voltage[C]//International Conference on Renewable Power Generation. Beijing:RPG, 2015:1-5.
[13] ZHANG L D, HARNEFORS L, NEE H P. Power synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2):809-820.
[14] 王金华,王宇翔,顾云杰,等. 基于虚拟同步发电机控制的并网变流器同步频率谐振机理研究[J]. 电源学报,2016,14(2):17-23. WANG Jin-hua, WANG Yu-xiang, GU Yun-jie, et al. Synchronous frequency resonance in grid-connected VSCs with virtual synchronous generator technology[J]. Journal of Power Supply, 2016, 14(2):17-23.
[15] 李武华, 王金华,杨贺雅,等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报,2017,37(2):381-391. LI Wu-hua, WANG Jin-hua, YANG He-ya, et al. Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2):381-391.
[16] 杜威,姜齐荣,陈蛟瑞. 微电网电源的虚拟惯性频率控制策略[J]. 电力系统自动化,2011,35(23):26-31. DU Wei, JIANG Qi-rong, CHEN Jiao-rui. Frequencycontrol strategy of distributed generations based on virtual inertia in a microgrid[J]. Automation of Electric Power Systems, 2011, 35(23):26-31.
[17] SHINTAI T, MIURA Y, ISE T. Oscillation damping of a distributed generator using a virtual synchronous generator[J]. IEEE Transactions on Power Delivery, 2014, 29(2):668-676.
[18] 胡寿松. 自动控制原理:第5版[M].北京:科学出版社, 2007:217-244.
[19] LIU J, MIURA Y, ISE T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Industrial Electronics, 2016,31(5):3600-3611.

[1] 宿紫鹏, 杨磊, 杨家强, 高敏. 基于开关表决策的APF与TSC混合系统投切控制方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2201-2209.
[2] 袁庆伟, 赵荣祥. 考虑死区的三相PWM逆变器共模电压抑制技术[J]. 浙江大学学报(工学版), 2017, 51(11): 2276-2286.