Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 560-568    DOI: 10.3785/j.issn.1008-973X.2018.03.019
电气工程     
考虑开断相对概率与后果的电网脆弱线路辨识
单政博1, 王慧芳1, 林冠强2, 何奔腾1
1. 浙江大学 电气工程学院, 浙江 杭州 310027;
2. 广东电网有限责任公司惠州供电局, 广东 惠州 516003
Identification of vulnerable lines in power grid consideringrelative probability and consequence of line outage
SHANZheng-bo1, WANG Hui-fang1, LIN Guan-qiang2, HE Ben-teng1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Huizhou Power Supply Bureau of Guangdong Power Grid Co., Huizhou 516003, China
 全文: PDF(1135 KB)   HTML
摘要:

综合线路开断的相对概率和开断后果,考虑网架拓扑结构及实时运行状态、电源及负荷分布以及线路的传输容量等关键电网信息,给出识别电网脆弱线路的新方法.首先,定义单位熵综合负载率来描述电网的脆弱性,以线路开断前后该指标的变化,并用线路两端节点的重要度对其进行修正,以此来衡量线路开断后果.为合理地评估节点重要度,引入广泛用于网页排序的HITS算法,并对算法进行适应性改进.然后,从线路自身故障率和线路运行时受负荷随机波动影响而潮流越限的相对概率两方面评估线路开断相对概率;给出电网脆弱线路识别流程.IEEE 39算例验证了所提方法合理有效.

Abstract:

Considering key information of power grid, such as topology, running state, distribution of power source and load, line flow limit, a new method to identify vulnerable transmission lines was proposed based on relative probability and consequence of line outage. Firstly, comprehensive load rate of unit entropy was defined to represent power grid vulnerability. Change of this index after a line outage was modified by node importance, which measured the consequence of line outage. Hypertext-Induced Topic Search (HITS) algorithm, widely used in web page rank, was modified to evaluate the node importance of power grid. Secondly, relative probability of line outage was calculated considering line failure rate and relative probability of line flow off-limit caused by random fluctuation of loads. Lastly, the specific evaluation process for identifying vulnerable transmission lines was given. Case study of IEEE 39 power system validates that the proposed method is reasonable and efficient.

收稿日期: 2016-09-30 出版日期: 2018-09-11
CLC:  TP212  
基金资助:

广东电网公司科技资助项目(GDKJQQ20153014).

通讯作者: 王慧芳,女,副教授.orcid.org/0000-0002-1483-364X.     E-mail: huifangwang@zju.edu.cn
作者简介: 单政博(1993-),男,硕士生,从事电力系统脆弱性评估研究.orcid.org/0000-0001-7073-1915.E-mail:zbshan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

单政博, 王慧芳, 林冠强, 何奔腾. 考虑开断相对概率与后果的电网脆弱线路辨识[J]. 浙江大学学报(工学版), 2018, 52(3): 560-568.

SHANZheng-bo, WANG Hui-fang, LIN Guan-qiang, HE Ben-teng. Identification of vulnerable lines in power grid consideringrelative probability and consequence of line outage. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 560-568.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.019        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/560

[1] 石立宝, 史中英, 姚良忠, 等. 现代电力系统连锁性大停电事故机理研究综述[J]. 电网技术, 2010(3):48-54. SHI Ying-bao, SHI Zhong-ying,YAO Liang-zhong. A review of mechanism of large cascading failure blackouts of modern power system[J]. Power System Technology, 2010(3):48-54.
[2] 印永华, 郭剑波, 赵建军. 美加"8·14"大停电事故初步分析以及应吸取的教训[J]. 电网技术, 2003, 27(10):8-11. YIN Yong-hua, GUO Jian-bo, ZHAO Jian-jun. Preliminary analysis of large scale blackout in interconnected north America power grid on August 14 and lessons to be drawn[J]. Power System Technology, 2003, 27(10):8-11.
[3] 高翔, 庄侃沁, 孙勇. 西欧电网"11, 4"大停电事故的启示[J]. 电网技术, 2007, 31(1):25-31. GAO Xiang, ZHUANG Kan-qin, SUN Yong. Lessons and enlightenment from blackout occurred in UCTE grid on November 4, 2006[J]. Power System Technology, 2007, 31(1):25-31.
[4] LIU B C C, JUNG J, HEYDT G T, et al. The strategic power infrastructure defense (SPID) system:a conceptual design[J]. Control Systems, IEEE, 2000, 20(4):40-52.
[5] FOUAD A A, ZHOU Q, VITTAL V. System vulnerability as a concept to assess power system dynamic security[J]. Power Systems, IEEE Transactions on, 1994, 9(2):1009-1015.
[6] 刘群英, 刘俊勇, 刘起方. 基于支路势能信息的电网脆弱性评估[J]. 电力系统自动化, 2008, 32(10):6-11. LIU Qun-ying,LIU Jun-yong,LIU Qi-fang. Power grid vulnerability assessment based on branch potential energy information[J]. Automation of Electric Power Systems, 2008,32(10):6-11.
[7] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[8] 曹一家, 陈晓刚, 孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J]. 电力自动化设备, 2006, 26(12):1-5. CAO Yi-jia, CHEN Xiao-gang, SUN Ke. Identification of vulnerable lines in power grid based on complex network theory[J]. Electric Power Automation Equipment, 2006, 26(12):1-5.
[9] 倪向萍, 梅生伟, 张雪敏. 基于复杂网络理论的输电线路脆弱度评估方法[J]. 电力系统自动化, 2008, 32(4):1-5. NIXiang-ping,MEI Sheng-wei,ZHANG Xue-min. Transmission lines' vulnerability assessment based on complex network theory[J]. Automation of Electric Power Systems,2008,32(4):1-5.
[10] BOMPARD E, NAPOLI R, XUE F. Extended topological approach for the assessment of structural vulnerability in transmission networks[J]. Generation, Transmission and Distribution, IET, 2010, 4(6):716-724.
[11] BOMPARD E, NAPOLI R, XUE F. Analysis of structural vulnerabilities in power transmission grids[J]. International Journal of Critical Infrastructure Protection, 2009, 2(1):5-12.
[12] 徐林, 王秀丽, 王锡凡. 电气介数及其在电力系统关键线路识别中的应用[J]. 中国电机工程学报, 2010(1):33-39. XU Lin, WANG Xiu-li, WANG Xi-fan, Electric betweenness and its application in vulnerable line identification in power system[J]. Proceedings of the CSEE, 2010(1):33-39.
[13] WANG K, ZHANG B, ZHANG Z, et al. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load[J]. Physica A:Statistical Mechanics and its Applications, 2011, 390(23):4692-4701.
[14] 鞠文云, 李银红. 基于最大流传输贡献度的电力网关键线路和节点辨识[J]. 电力系统自动化, 2012, 36(9):6-12. JU Wen-yun, LI Yin-hong, Iditification of criticallines and nodes in power grid based on maximum flow transmission contribution degree[J]. Automation of Electric Power Systems, 2012, 36(9):6-12.
[15] 蔡晔, 曹一家, 李勇, 等. 考虑电压等级和运行状态的电网脆弱线路辨识[J]. 中国电机工程学报, 2014, 34(13):2124-2131. CAI Ye, CAO Yi-jia, LI yong, et al. Identification of vulnerable lines in urban power grid based on voltage grade and running state[J]. Proceedings of the CSEE, 2014, 34(13):2124-2131.
[16] 李勇, 刘俊勇, 刘晓宇, 等. 基于潮流熵的电网连锁故障传播元件的脆弱性评估[J]. 电力系统自动化, 2012, 36(19):11-16. LI Yong, LIU Jun-yong, LIU Xiao-yu, et al. Vulnerability assessment in power grid cascading failures based on entropy of power flow[J]. Automation of Electric Power Systems, 2012,36(19):11-16.
[17] 王锡凡. 电网可靠性评估的随机网流模型[J]. 电力系统自动化, 2006, 30(12):1-6. WANG Xi-fan. Probabilistic network flow models for reliability evaluation of power networks[J]. Automation of Electric Power Systems,2006,30(12):1-6.
[18] 何飞, 梅生伟, 薛安成, 等. 基于直流潮流的电力系统停电分布及自组织临界性分析[J]. 电网技术, 2006, 30(14):7-12. HE fei, MEI Sheng-wei, XUE An-cheng, et al. Blackouts distribution and Self-organized criticality of power system based on DC power flow[J]. Power System Technology, 2006, 30(14):7-12.
[19] CHEN J, THORP J S, DOBSON I. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[J]. International Journal of Electrical Power and Energy Systems, 2005, 27(4):318-326.
[20] 曹一家, 王光增, 曹丽华, 等. 基于潮流熵的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7):1-6. CAO Yi-jia, WANG Guang-zeng, CAO Li-hua, et al. An identification model for self-organized criticality of power grids based on power flowentropy[J]. Automation of Electric Power Systems, 2011,35(7):1-6.
[21] STROGATZ S H. Exploring complex networks[J]. Nature, 2001, 410(6825):268-276.
[22] KLEINBERG J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM (JACM), 1999, 46(5):604-632.
[23] FARAHAT A, LOFARO T, MILLER J C, et al. Authority rankings from HITS, PageRank, and SALSA:existence, uniqueness, and effect of initialization[J]. SIAM Journal on Scientific Computing, 2006, 27(4):1181-1201.
[24] XIE Y, HUANG T Z. Amodel based on cocitation for web information retrieval[J]. Mathematical Problems in Engineering, 2014, 2014:1-6.
[25] 余兴祥, 刘友波, 罗辉, 等. 考虑潮流转移结构特征的输电线路脆弱度在线评估[J]. 电力科学与技术学报, 2011, 26(4):80-87. YU Xing-xiang,LIU You-bo,LUO Hui, et al. On-line assessment for transmission line vulnerability with structure characteristics of power flow transfer considering[J]. Journal of Electric Power Science and Technology, 2011, 26(4):80-87.
[26] 王瑞祥, 夏莹, 熊小伏. 计及气象因素的输电线路维修风险分析[J]. 电网技术, 2010(1):219-222. WANG Rui-xiang,XIA Ying,XIONG Xiao-fu. Riskanalysis method for transmission line maintenance considering meteorological factors[J]. Power System Technology, 2010(1):219-222.
[27] 杨洪明, 黄拉, 何纯芳, 等. 冰风暴灾害下输电线路故障概率预测[J]. 电网技术, 2012, 36(4):213-218. YANG Hong-ming,HUANG La,He Chun-fang,et al. Probabilistic prediction of transmission line fault resulted from disaster of ice storm[J]. Power System Technology, 2012, 36(4):213-218.
[28] 孙羽, 王秀丽, 王建学, 等. 架空线路冰风荷载风险建模及模糊预测[J]. 中国电机工程学报, 2011, 31(7):21-28. SUN Yu, WANG Xiu-li, WANG Jian-xue, et al. Wind and ice loading risk model and fuzzy forecast for overhead transmission lines[J]. Proceedings of the CSEE, 2011, 31(7):21-28.
[29] 姚恺丰, 于继来, 徐泰山, 等. 热带气旋引发电网群发性故障的动态事故集生成方法[J]. 电网技术, 2014, 38(6):1593-1599. YAO Kai-feng, YU Ji-lai, XU Tai-shan, et al. A method to generate dynamic accident set for power grid clustered faults caused by tropical cyclone[J]. Power System Technology, 2014, 38(6):1593-1599.
[30] 岳贤龙, 王涛, 顾雪平,等. 基于自组织临界理论的电网脆弱线路辨识[J]. 电力系统保护与控制, 2016, 44(15):18-26. YUE Xian-long, WANG Tao, GU Xue-ping, et al. Vulnerableline identification of power grid based on self-organized critical theory[J]. Power System Protection and Control, 2016, 44(15):18-26.

[1] 吴超, 刘元安, 吴帆, 范文浩, 唐碧华. 移动性受限物联网应用中基于图论的高效数据采集策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1444-1451.
[2] 施春飞, 孙毅, 王晓萍. SPRi传感器的数据处理方法[J]. 浙江大学学报(工学版), 2018, 52(4): 657-662.
[3] 张安坤, 王为民, 胡协和. 基于FPGA的控制系统高效通信架构的设计与实现[J]. J4, 2010, 44(4): 659-664.
[4] 冯冬芹, 李光辉, 全剑敏, 等. 基于簇头冗余的无线传感器网络可靠性研究[J]. J4, 2009, 43(5): 849-854.
[5] 方向生, 刘伟庭, 陈裕泉, 等. 金属粒子掺杂的多壁碳纳米管气敏性研究[J]. J4, 2009, 43(5): 911-915.