Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 657-662    DOI: 10.3785/j.issn.1008-973X.2018.04.007
自动化技术     
SPRi传感器的数据处理方法
施春飞, 孙毅, 王晓萍
浙江大学 现代光学国家重点实验室, 浙江 杭州 310027
Data processing methods of SPRi sensor
SHI Chun-fei, SUN Yi, WANG Xiao-ping
State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1687 KB)   HTML
摘要:

为了消除传感器输出数据中的高频噪声和低频漂移,以SPRi传感器的NaCl折射率样品和BSA生物样品检测的实验数据为例,研究零相移数字滤波、小波分析和希尔伯特-黄变换(HHT)3种数据处理方法及实际应用.结果表明,与零相移数字滤波相比,小波分析和HHT变换这两种时频分析方法在有用细节信息的提取方面更具优势.经这两种方法处理后,SPRi传感器的折射率分辨率达到1.4×10-6 RIU,最小可检测0.025 g/L NaCl溶液和将原液稀释51 200倍的BSA抗体溶液.HHT变换具有自适应的特点,针对不同的实验数据,自动产生相应的基函数,并且操作简便,能够获得较理想的滤波效果,从而提高传感器的性能.

Abstract:

Three kinds of data processing methods including zero-phase-shift digital filter, wavelet analysis, Hilbert-Huang transform (HHT) and their practical applications were analyzed in order to eliminate the high frequency noise and low frequency drift in the output data of sensors. Surface plasmon resonance imaging (SPRi) sensor experimental data of NaCl refractive index sample and the BSA biological sample detection were taken as an example. Results show that wavelet analysis and HHT, two time-frequency analysis methods, are more effective in extracting useful detail information compared with zero-phase-shift digital filter. After these two methods are processed, the refractive index resolution of the SPRi sensor goes to 1.4×10-6 RIU, and the detections of limit are 0.025 g/L NaCl solution and the BSA antibody solution with 51 200 times dilution. HHT has the characteristic of self-adaptability, which can automatically generate the corresponding basis functions for different experimental data. It is easy to operate, and can obtain the ideal filtering result, thus improve the performance of the sensor.

收稿日期: 2017-01-12
CLC:  TP212  
基金资助:

国家自然科学基金资助项目(21277118).

通讯作者: 王晓萍,女,教授.orcid.org/0000-0002-9466-2667.     E-mail: xpwang@zju.edu.cn
作者简介: 施春飞(1991-),女,硕士生,从事表面等离子体共振传感器的研究.orcid.org/0000-0002-9000-7112.E-mail:shi_chun_fei@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

施春飞, 孙毅, 王晓萍. SPRi传感器的数据处理方法[J]. 浙江大学学报(工学版), 2018, 52(4): 657-662.

SHI Chun-fei, SUN Yi, WANG Xiao-ping. Data processing methods of SPRi sensor. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 657-662.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/657

[1] PILIARIK M, HOMOLA J. Self-referencing SPR imaging for most demanding high-throughput screening applications[J]. Sensors and Actuators B:Chemical, 2008, 134(2):353-355.
[2] SCARANO S, SCUFFI C, MASCINI M, et al. Surface plasmon resonance imaging (SPRi)-based sensing:a new approach in signal sampling and management[J]. Biosensors and Bioelectronics, 2010, 26(4):1380-1385.
[3] 通用电气公司. 表面细胞质基因组共振系统中的实时噪声降低的自适应线性滤波器. 中国, 201080035292.2[P]. 2010-07-15.
[4] 张玮, 邓焱, 王大千, 等. 基于变曝光时间图像采集法提高SPR相位成像检测灵敏度[J]. 清华大学学报:自然科学版, 2011, 51(4):433-438. ZHANG Wei, DENG Yan, WANG Da-qian, et al. Improving SPR phase imaging system detection sensitivity by changing the exposure time periodically[J]. Journal of Tsinghua University:Science and Technology, 2011, 51(4):433-438.
[5] CHEN H, WANG X. Study on the performance promotion of the surface plasmon resonance analytical system[J].Instrumentation Science and Technology, 2012, 40(2/3):226-237.
[6] COOPER M A. Optical biosensors in drug discovery[J]. Nature Reviews Drug Discovery, 2002, 1(7):515-528.
[7] 罗骋, 李宏生, 赵立业. 自适应Kalman和零相移滤波算法在重力信号处理中的对比[J]. 中国惯性技术学报, 2011, 19(3):348-351. LUO Cheng, LI Hong-sheng, ZHAO Li-ye. Comparison of adaptive Kalman filter and zero-phase filter in processing gravity signal[J]. Journal of Chinese Inertial Technology, 2011, 19(3):348-351.
[8] 廖德春, 廖新浩. 几种常用滤波方法端部效应的比较[J]. 中国科学院上海天文台年刊, 2013(1):50-56. LIAO De-chun, LIAO Xin-hao. Comparison of deformation at ends of the results obtained by some commonly used filters[J]. Annals of Shanghai Observatory Academia Sinica, 2013(1):50-56.
[9] GALIANA-MERINO J J, PLA C, FERNANDEZ-CORTES A, et al. EnvironmentalWaveletTool:continuous and discrete wavelet analysis and filtering for environmental time series[J]. Computer Physics Communications, 2014, 185(10):2758-2770.
[10] YAN R, GAO R X, CHEN X. Wavelets for fault diagnosis of rotary machines:a review with applications[J]. Signal Processing, 2014, 96:1-15.
[11] YAJNIK A. Novel technique of oversampling the broken images using wavelet transform[J]. Applied and Computational Harmonic Analysis, 2015, 39(2):357-368.
[12] KALE M C, ATAC G, GEREK Ö N. A biorthogonal wavelet design technique using Karhunen-Loéve transform approximation[J]. Digital Signal Processing, 2016, 51:202-222.
[13] 张斌, 王彤, 谷传纲, 等. 湍流信号分析中小波基的对比和选取[J]. 工程热物理学报, 2011, 32(4):585-588. ZHANG Bin, WANG Tong, GU Chuan-gang, et al. Comparison and selection of wavelet functions in turbulent signal processing[J]. Journal of Engineering Thermophysics, 2011, 32(4):585-588.
[14] 张华, 陈小宏, 杨海燕. 地震信号去噪的最优小波基选取方法[J]. 石油地球物理勘探, 2011, 46(1):70-75. ZHANG Hua, CHEN Xiao-hong, YANG Hai-yan. Optimistic wavelet basis selection in seismic signal noise elimination[J]. Oil Geophysical Prospecting, 2011, 46(1):70-75.
[15] 何正友, 钱清泉. 电力系统暂态信号分析中小波基的选择原则[J]. 电力系统自动化, 2003, 27(10):45-48. HE Zheng-you, QIAN Qing-quan. Mother wavelet option method in the transient signal analysis of electric power systems[J]. Automation of Electric Power Systems, 2003, 27(10):45-48.
[16] 焦飞, 陈璞, 朱少华. 小波消噪在光纤陀螺温度补偿中的应用[J]. 压电与声光, 2014, 36(5):768-771. JIAO Fei, CHEN Pu, ZHU Shao-hua. The application of wavelet denoising to FOG temperature-induced drift compensation[J]. Piezoelectric and Acoustooptics, 2014, 36(5):768-771.
[17] HUANG N E. Hilbert-Huang transform and its applications[M]. Singapore:World Scientific Publishing, 2014:27-125.
[18] 谭善文, 秦树人, 汤宝平. Hilbert-Huang变换的滤波特性及其应用[J]. 重庆大学学报, 2004, 27(2):9-12. TAN Shan-wen, QIN Shu-ren, TANG Bao-ping. The filtering character of Hilbert-Huang Transform and its application[J]. Journal of Chongqing University, 2004, 27(2):9-12.
[19] LEI Y, LIN J, HE Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1):108-126.

[1] 吴超, 刘元安, 吴帆, 范文浩, 唐碧华. 移动性受限物联网应用中基于图论的高效数据采集策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1444-1451.
[2] 单政博, 王慧芳, 林冠强, 何奔腾. 考虑开断相对概率与后果的电网脆弱线路辨识[J]. 浙江大学学报(工学版), 2018, 52(3): 560-568.
[3] 张安坤, 王为民, 胡协和. 基于FPGA的控制系统高效通信架构的设计与实现[J]. J4, 2010, 44(4): 659-664.
[4] 冯冬芹, 李光辉, 全剑敏, 等. 基于簇头冗余的无线传感器网络可靠性研究[J]. J4, 2009, 43(5): 849-854.
[5] 方向生, 刘伟庭, 陈裕泉, 等. 金属粒子掺杂的多壁碳纳米管气敏性研究[J]. J4, 2009, 43(5): 911-915.