电子与通信工程 |
|
|
|
|
基于深度学习的星载SAR工作模式鉴别 |
贺俊( ),张雅声*( ),尹灿斌 |
航天工程大学,北京 101416 |
|
Operating modes identification of spaceborne SAR based on deep learning |
Jun HE( ),Ya-sheng ZHANG*( ),Can-bin YIN |
Space Engineering University, Beijing 101416, China |
1 |
王振力, 钟海 国外先进星载SAR卫星的发展现状及应用[J]. 国防科技, 2016, 37 (1): 19- 24 WANG Zhen-li, ZHONG Hai The nowaday development and application of oversea advanced spaceborne SAR[J]. National Defense Science and Technology, 2016, 37 (1): 19- 24
|
2 |
陈颖颖, 吴彦鸿, 贾鑫 对不同工作模式星载合成孔径雷达的侦察研究[J]. 计算机工程与应用, 2013, 49 (12): 223- 227,241 CHEN Ying-ying, WU Yan-hong, JIA Xin Surveillance study of spaceborne synthetic aperture radar in different working modes[J]. Computer Engineering and Applications, 2013, 49 (12): 223- 227,241
doi: 10.3778/j.issn.1002-8331.1110-0569
|
3 |
唐小明, 立春升, 孙兵 基于遗传算法的星载SAR工作模式反演方法[J]. 空间电子技术, 2013, 10 (2): 90- 94 TANG Xiao-ming, LI Chun-sheng, SUN Bing An operation inversion method of spaceborne SAR based on genetic algorithm[J]. Space Electronic Technology, 2013, 10 (2): 90- 94
doi: 10.3969/j.issn.1674-7135.2013.02.017
|
4 |
JORDI I, ARTHUR V, MARCELA A, et al Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series[J]. Remote Sensing, 2016, 8 (5): 362- 382
doi: 10.3390/rs8050362
|
5 |
夏周越, 钟华, 陈维 侦察模式下星载合成孔径雷达工作模式鉴别[J]. 杭州电子科技大学学报, 2017, 37 (4): 36- 40 XIA Zhou-yue, ZHONG Hua, CHEN Wei Identification of the spaceborne SAR operating modes under reconnaissance mode[J]. Journal of Hangzhou Dianzi University, 2017, 37 (4): 36- 40
|
6 |
刘寒艳, 宋红军, 程增菊 条带模式、聚束模式和滑动聚束模式的比较[J]. 中国科学院研究生院学报, 2011, 28 (3): 410- 417 LIU Han-yan, SONG Hong-jun, CHENG Zeng-ju Comparative study on stripmap mode, spotlight mode, and sliding spotlight mode[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2011, 28 (3): 410- 417
|
7 |
胡新宇, 张铁军, 王昀 低截获概率雷达信号侦察技术[J]. 航天电子对抗, 2020, 36 (5): 40- 43 HU Xin-yu, ZHANG Tie-jun, WANG Jun Low probability of intercept radar signal reconnaissance technology[J]. Aerospace Electronic Warfare, 2020, 36 (5): 40- 43
doi: 10.3969/j.issn.1673-2421.2020.05.010
|
8 |
陈颖颖, 贾鑫, 吴彦鸿 对聚束和滑动聚束模式下星载合成孔径雷达的旁瓣侦察比较研究[J]. 科学技术与工程, 2012, 12 (8): 1785- 1789 CHEN Ying-ying, JIA Xin, WU Yan-hong The sidelobe surveillance study of spaceborne synthetic aperture radar in spotlight and sliding spotlight mode[J]. Science Technology and Engineering, 2012, 12 (8): 1785- 1789
doi: 10.3969/j.issn.1671-1815.2012.08.014
|
9 |
周飞燕, 金林鹏, 董军 卷积神经网络研究综述[J]. 计算机学报, 2017, 40 (6): 1229- 1251 ZHOU Fei-yan, JIN Lin-peng, DONG Jun Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40 (6): 1229- 1251
doi: 10.11897/SP.J.1016.2017.01229
|
10 |
李红光, 郭英, 眭萍, 等 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报: 工学版, 2020, 54 (10): 1945- 1954 LI Hong-guang, GUO Ying, SUI Ping, et al Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 1945- 1954
|
11 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C] // Proceedings of the 32nd International Conference on Machine Learning. Lille: ICML, 2015: 448-456.
|
12 |
HAO X, ZHANG G Deep learning[J]. Encyclopedia with Semantic Computing and Robotic Intelligence, 2017, 1 (1): 1630018
|
13 |
LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects [EB/OL]. [2021-06-10]. https://ieeexplore.ieee.org/document/9451544.
|
14 |
金列俊, 詹建明, 陈俊华, 等 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (3): 467- 474 JIN Lie-jun, ZHAN Jian-ming, CHEN Jun-hua, et al Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 467- 474
|
15 |
LJABER O, AVCI O, KIRANYAZ S, et al Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154- 170
doi: 10.1016/j.jsv.2016.10.043
|
16 |
汪海晋, 尹宗宇, 柯臻铮, 等 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报: 工学版, 2020, 54 (5): 931- 939 WANG Hai-jin, YIN Zong-yu, KE Zhen-zheng, et al Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 931- 939
|
17 |
OLKHOVSKIY M, MÜLLEROVÁ E, MARTÍNEK P Impulse signals classification using one dimensional convolutional neural network[J]. Journal of Electrical Engineering, 2020, 71 (6): 397- 405
doi: 10.2478/jee-2020-0054
|
18 |
ZHANG M, LIU Z, LI L, et al Enhanced efficiency BPSK demodulator based on one-dimensional convolutional neural network[J]. IEEE Access, 2018, 6: 26939- 26948
doi: 10.1109/ACCESS.2018.2834144
|
19 |
LIN M, CHEN Q, YAN S C. Network in network [C] // Proceedings of the International Conference on Learning Representations. Banff: ICLR, 2014: 1-10.
|
20 |
陈杰, 杨威, 王鹏波, 等 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9 (2): 205- 220 CHEN Jie, YANG Wei, WANG Peng-bo, et al Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9 (2): 205- 220
doi: 10.12000/JR20015
|
21 |
王岩. 深度神经网络的归一化技术研究[D]. 南京: 南京邮电大学, 2019. WANG Yan. Analysis of normalization for deep neural network [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|