Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1676-1684    DOI: 10.3785/j.issn.1008-973X.2022.08.022
电子与通信工程     
基于深度学习的星载SAR工作模式鉴别
贺俊(),张雅声*(),尹灿斌
航天工程大学,北京 101416
Operating modes identification of spaceborne SAR based on deep learning
Jun HE(),Ya-sheng ZHANG*(),Can-bin YIN
Space Engineering University, Beijing 101416, China
 全文: PDF(1086 KB)   HTML
摘要:

针对传统星载合成孔径雷达(SAR)工作模式反演方法在识别准确率和时效性上存在局限性的问题,根据SAR信号的特点,提出基于一维卷积神经网络的星载SAR工作模式识别模型. 该模型以星载SAR信号脉冲峰值幅度作为输入,利用卷积神经网络的自主学习和模式识别能力,避免了传统方法的人为影响因素,能够学习原始信号更具有代表性的特征,最终实现星载SAR工作模式的有效识别. 在设计一维卷积神经网络结构时,参考了现有性能较优的卷积神经网络,根据网络训练过程中准确率和损失值的反馈,调整设置了较优的参数以训练得到具有良好识别性能的模型. 基于仿真数据的对比实验表明,该模型相较于传统反演方法具有更高的识别准确率,同时对于主旁瓣信号和不同侦收条件均具有较优的鲁棒性和抗噪性.

关键词: 星载合成孔径雷达(SAR)工作模式峰值幅度一维卷积神经网络部署区域    
Abstract:

An operating modes identification of spaceborne synthetic aperture radar (SAR) model based on one-dimensional convolutional neural network was proposed according to the timing characteristics of SAR signals, in order to solve the limitation of the recognition accuracy and the timeliness of traditional spaceborne SAR operating modes inversion methods. The impulse peak amplitude of the SAR signal was taken as input, more subtle and representative features of the original signal were learned by using adaptive learning and pattern recognition ability of the convolutional neural network, the human interference factors of traditional methods were avoided, and the effective identification of the operating modes of spaceborne SAR was finally realized. The one-dimensional convolutional neural network structure was designed referring to the existing convolutional neural network with good performance, and the better parameters were adjusted and set to train a model with good recognition performance according to the feedback of the accuracy and the loss value in the training process of the network. Contrast experiments based on simulation data demonstrate that the model has higher recognition accuracy than traditional spaceborne SAR operating modes inversion methods and has excellent robustness and noise anti-noise ability under different types of signals and different detection conditions.

Key words: spaceborne synthetic aperture radar (SAR)    operating mode    peak amplitude    one-dimensional convolutional neural network    deployment area
收稿日期: 2021-08-05 出版日期: 2022-08-30
CLC:  TN 974  
基金资助: 国家自然科学基金资助项目(61906213)
通讯作者: 张雅声     E-mail: hj1997@stu.xjtu.edu.cn;zhangyspublic@163.com
作者简介: 贺俊(1997—),男,博士生,从事雷达信号处理研究. orcid.org/0000-0003-1221-7947. E-mail: hj1997@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
贺俊
张雅声
尹灿斌

引用本文:

贺俊,张雅声,尹灿斌. 基于深度学习的星载SAR工作模式鉴别[J]. 浙江大学学报(工学版), 2022, 56(8): 1676-1684.

Jun HE,Ya-sheng ZHANG,Can-bin YIN. Operating modes identification of spaceborne SAR based on deep learning. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1676-1684.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.022        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1676

图 1  星载SAR工作模式示意图
图 2  一维卷积神经网络结构示意图
图 3  不同工作模式下的脉冲信号峰值幅度
仿真参数 数值 仿真参数 数值
发射功率 5 000 W 合成孔径时间 20 s
天线增益 45 dB 最小侧视角 20°
波束方位宽度 0.2° 最大侧视角 50°
波束距离宽度 最大斜视角 30°
信号带宽 30 MHz 发射脉冲宽度 5 us
载波频率 10 GHz 侦收采样率 60 MHz
表 1  星载SAR传感器参数
图 4  训练过程中准确率曲线图
图 5  训练过程损失曲线图
图 6  不同识别方法的分类混淆矩阵
方法 Re/% Acc/%
条带
模式
聚束
模式
滑动
聚束
斜视
扫描
侧式
扫描
文献[5] 79.41 84.24 75.41 56.54 55.03 70.46
LSTM 89.22 92.39 95.63 89.53 96.04 92.59
GRU 90.20 95.11 92.35 91.62 97.63 93.23
1D-CNN 91.18 94.02 92.90 93.19 100.00 94.09
表 2  不同分类方法的识别准确率对比结果
方法 Nt tt
LSTM 80 755 205 7 h 16 min 22 s
GRU 80 229 381 5 h 53 min 56 s
1D-CNN 4 262 597 1 h 10 min 46 s
表 3  不同深度学习模型的训练对比结果
图 7  不同信号类型的分类混淆矩阵
信号类型 Re/% Acc/%
条带
模式
聚束
模式
滑动
聚束
斜视
扫描
侧式
扫描
主瓣信号 90.60 93.60 90.24 90.15 100 92.82
旁瓣信号 90.24 90.58 91.30 90.90 94.53 91.50
表 4  不同类型信号分类准确率
图 8  地面接收站部署区域划分
图 9  不同接收区域的分类混淆矩阵
接收区域 Re/% Acc/%
条带
模式
聚束
模式
滑动
聚束
斜视
扫描
侧式
扫描
近区 90.00 94.44 94.51 91.21 94.62 92.97
中区 90.22 94.57 90.53 89.13 93.98 91.63
远区 88.18 90.32 89.25 86.02 96.74 90.09
表 5  不同接受区域分类准确率
1 王振力, 钟海 国外先进星载SAR卫星的发展现状及应用[J]. 国防科技, 2016, 37 (1): 19- 24
WANG Zhen-li, ZHONG Hai The nowaday development and application of oversea advanced spaceborne SAR[J]. National Defense Science and Technology, 2016, 37 (1): 19- 24
2 陈颖颖, 吴彦鸿, 贾鑫 对不同工作模式星载合成孔径雷达的侦察研究[J]. 计算机工程与应用, 2013, 49 (12): 223- 227,241
CHEN Ying-ying, WU Yan-hong, JIA Xin Surveillance study of spaceborne synthetic aperture radar in different working modes[J]. Computer Engineering and Applications, 2013, 49 (12): 223- 227,241
doi: 10.3778/j.issn.1002-8331.1110-0569
3 唐小明, 立春升, 孙兵 基于遗传算法的星载SAR工作模式反演方法[J]. 空间电子技术, 2013, 10 (2): 90- 94
TANG Xiao-ming, LI Chun-sheng, SUN Bing An operation inversion method of spaceborne SAR based on genetic algorithm[J]. Space Electronic Technology, 2013, 10 (2): 90- 94
doi: 10.3969/j.issn.1674-7135.2013.02.017
4 JORDI I, ARTHUR V, MARCELA A, et al Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series[J]. Remote Sensing, 2016, 8 (5): 362- 382
doi: 10.3390/rs8050362
5 夏周越, 钟华, 陈维 侦察模式下星载合成孔径雷达工作模式鉴别[J]. 杭州电子科技大学学报, 2017, 37 (4): 36- 40
XIA Zhou-yue, ZHONG Hua, CHEN Wei Identification of the spaceborne SAR operating modes under reconnaissance mode[J]. Journal of Hangzhou Dianzi University, 2017, 37 (4): 36- 40
6 刘寒艳, 宋红军, 程增菊 条带模式、聚束模式和滑动聚束模式的比较[J]. 中国科学院研究生院学报, 2011, 28 (3): 410- 417
LIU Han-yan, SONG Hong-jun, CHENG Zeng-ju Comparative study on stripmap mode, spotlight mode, and sliding spotlight mode[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2011, 28 (3): 410- 417
7 胡新宇, 张铁军, 王昀 低截获概率雷达信号侦察技术[J]. 航天电子对抗, 2020, 36 (5): 40- 43
HU Xin-yu, ZHANG Tie-jun, WANG Jun Low probability of intercept radar signal reconnaissance technology[J]. Aerospace Electronic Warfare, 2020, 36 (5): 40- 43
doi: 10.3969/j.issn.1673-2421.2020.05.010
8 陈颖颖, 贾鑫, 吴彦鸿 对聚束和滑动聚束模式下星载合成孔径雷达的旁瓣侦察比较研究[J]. 科学技术与工程, 2012, 12 (8): 1785- 1789
CHEN Ying-ying, JIA Xin, WU Yan-hong The sidelobe surveillance study of spaceborne synthetic aperture radar in spotlight and sliding spotlight mode[J]. Science Technology and Engineering, 2012, 12 (8): 1785- 1789
doi: 10.3969/j.issn.1671-1815.2012.08.014
9 周飞燕, 金林鹏, 董军 卷积神经网络研究综述[J]. 计算机学报, 2017, 40 (6): 1229- 1251
ZHOU Fei-yan, JIN Lin-peng, DONG Jun Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40 (6): 1229- 1251
doi: 10.11897/SP.J.1016.2017.01229
10 李红光, 郭英, 眭萍, 等 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报: 工学版, 2020, 54 (10): 1945- 1954
LI Hong-guang, GUO Ying, SUI Ping, et al Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 1945- 1954
11 IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C] // Proceedings of the 32nd International Conference on Machine Learning. Lille: ICML, 2015: 448-456.
12 HAO X, ZHANG G Deep learning[J]. Encyclopedia with Semantic Computing and Robotic Intelligence, 2017, 1 (1): 1630018
13 LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects [EB/OL]. [2021-06-10]. https://ieeexplore.ieee.org/document/9451544.
14 金列俊, 詹建明, 陈俊华, 等 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (3): 467- 474
JIN Lie-jun, ZHAN Jian-ming, CHEN Jun-hua, et al Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 467- 474
15 LJABER O, AVCI O, KIRANYAZ S, et al Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154- 170
doi: 10.1016/j.jsv.2016.10.043
16 汪海晋, 尹宗宇, 柯臻铮, 等 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报: 工学版, 2020, 54 (5): 931- 939
WANG Hai-jin, YIN Zong-yu, KE Zhen-zheng, et al Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 931- 939
17 OLKHOVSKIY M, MÜLLEROVÁ E, MARTÍNEK P Impulse signals classification using one dimensional convolutional neural network[J]. Journal of Electrical Engineering, 2020, 71 (6): 397- 405
doi: 10.2478/jee-2020-0054
18 ZHANG M, LIU Z, LI L, et al Enhanced efficiency BPSK demodulator based on one-dimensional convolutional neural network[J]. IEEE Access, 2018, 6: 26939- 26948
doi: 10.1109/ACCESS.2018.2834144
19 LIN M, CHEN Q, YAN S C. Network in network [C] // Proceedings of the International Conference on Learning Representations. Banff: ICLR, 2014: 1-10.
20 陈杰, 杨威, 王鹏波, 等 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9 (2): 205- 220
CHEN Jie, YANG Wei, WANG Peng-bo, et al Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9 (2): 205- 220
doi: 10.12000/JR20015
21 王岩. 深度神经网络的归一化技术研究[D]. 南京: 南京邮电大学, 2019.
WANG Yan. Analysis of normalization for deep neural network [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.
[1] 汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.
[2] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.