Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 100-110    DOI: 10.3785/j.issn.1008-973X.2023.01.011
土木工程     
基于WPT-SVD和GA-BPNN的混凝土结构损伤识别
戴理朝(),曹威,易善昌,王磊*()
长沙理工大学 土木工程学院,湖南 长沙 410114
Damage identification of concrete structure based on WPT-SVD and GA-BPNN
Li-zhao DAI(),Wei CAO,Shan-chang YI,Lei WANG*()
School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
 全文: PDF(2787 KB)   HTML
摘要:

针对基于压电波动法检测混凝土结构损伤离散性大的问题,提出基于小波包-奇异值分解(WPT-SVD)和遗传算法优化的BP神经网络 (GA-BPNN) 模型的损伤识别方法. 该方法深度挖掘结构开裂损伤信号时频域变化特征,构建信号特征与损伤的对应关系,可以有效地识别结构损伤位置和程度. 在混凝土结构表面粘贴压电传感器测得损伤信号,对损伤信号进行WPT分解,以获得多维时频矩阵. 采用SVD对不同损伤状态下的时频矩阵进行降维,构建具有较高损伤敏感性的特征向量. 建立具有自适应学习能力的GA-BPNN,实现结构的损伤识别. 试验验证表明,压电信号奇异值可以作为损伤特征参量,主要频段的奇异值随着损伤的发展而下降,归一化奇异值向量距与损伤情况呈现3阶段对应关系. GA-BPNN较BPNN能够更好地表征信号特征与损伤间的关联性,识别结果更加稳定且精确度高,结构损伤位置和程度的识别精确度分别达到95.19%和94.47%.

关键词: 混凝土结构损伤识别压电波动法奇异值分解神经网络    
Abstract:

A damage detection method based on wavelet packet-singular value decomposition (WPT-SVD) and BP neural network model optimized by genetic algorithm (GA-BPNN) was proposed aiming at the problem of damage discretization of concrete structures based on piezoelectric wave method. The damage characteristics of signal were deeply explored for structural cracking in time-frequency domain. The relationship between the signal characteristics and the damage condition was built, which can identify the damage location and the damage degree of structures. The damage signal was measured by surface-mounted piezoceramic transducer on the concrete structures. The WPT was employed to obtain the multi-dimensional time-frequency matrix. Then SVD was used to reduce the dimension of time-frequency matrix under different damage states and construct feature vectors with high damage sensitivity. The GA-BPNN model with auto-adaptive learning was established, and the identification of structural damage was realized. The experimental results show that the singular value of piezoelectric signal can be used as the characteristic parameter of damage. The singular value of the main spectrum decreases with the development of damage. There is a correspondence of three stages between the normalized singular value vector distance and the damage. The GA-BPNN better fitted the correlation between the damage signal characteristics and the damage compared with the BPNN model. The identification was more stable, and the accuracy was significantly improved. The identification accuracy of damage location and damage degree of concrete structures were 95.19% and 94.47%, respectively.

Key words: concrete structure    damage detection    piezoelectric wave method    singular value decomposition    neural network
收稿日期: 2022-02-13 出版日期: 2023-01-17
CLC:  TU 375  
基金资助: 国家重点研发计划资助项目(2021YFB2600900);国家自然科学基金资助项目(52278140, 52008035);湖南省自然科学基金资助项目(2020JJ1006, 2021JJ40574);南方地区桥梁长期性能提升技术国家地方联合工程实验室(长沙理工大学)资助项目(22KE02);长沙理工大学专业学位研究生实践创新与创业能力提升项目(SJCX202028)
通讯作者: 王磊     E-mail: lizhaod@csust.edu.cn;leiwang@csust.edu.cn
作者简介: 戴理朝(1989—),男,副教授,从事桥梁耐久性和损伤识别的研究. orcid.org/0000-0003-2598-0837. E-mail: lizhaod@csust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
戴理朝
曹威
易善昌
王磊

引用本文:

戴理朝,曹威,易善昌,王磊. 基于WPT-SVD和GA-BPNN的混凝土结构损伤识别[J]. 浙江大学学报(工学版), 2023, 57(1): 100-110.

Li-zhao DAI,Wei CAO,Shan-chang YI,Lei WANG. Damage identification of concrete structure based on WPT-SVD and GA-BPNN. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 100-110.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/100

图 1  基于WPT-SVD和GA-BPNN的混凝土结构损伤识别框架
图 2  试验梁的配筋及尺寸
图 3  混凝土梁加载及传感器布置
ρ/(g·cm?3) ε k tan δ tc/℃ Qm
7.6 3 400 0.76 1.3 250 75
表 1  压电传感器的主要性能参数
图 4  激励信号的时域及频域图
图 5  试验梁的荷载-跨中挠度曲线
图 6  极限状态下B1的裂缝分布
图 7  B1在Ⅱ区段的时域图
图 8  B1在Ⅱ区段的频域图
图 9  B1在不同荷载下的信号时域图
图 10  混凝土梁在Ⅳ区的信号时域图
图 11  不同荷载等级的信号奇异值向量
图 12  荷载、挠度及归一化奇异值向量距的关系曲线
损伤情况 模型 数据集 R2 MSE
损伤位置 BPNN 训练集 0.890 9 9.222×10?3
BPNN 测试集 0.860 5 1.209×10?2
GA-BPNN 训练集 0.974 3 7.863×10?4
GA-BPNN 测试集 0.950 6 2.938×10?3
损伤程度 BPNN 训练集 0.501 4 0.101 2
BPNN 测试集 0.482 4 0.115 3
GA-BPNN 训练集 0.792 6 0.041 5
GA-BPNN 测试集 0.827 9 0.060 5
表 2  网络的评估指标
图 13  混凝土结构的损伤识别结果
1 梁超锋, 刘铁军, 肖建庄, 等 再生混凝土悬臂梁阻尼性能与损伤关系的试验研究[J]. 土木工程学报, 2016, 49 (7): 100- 106
LIANG Chao-feng, LIU Tie-jun, XIAO Jian-zhuang, et al Experimental study on relationship between damping capacity and damage degree of recycled concrete cantilever beam[J]. China Civil Engineering Journal, 2016, 49 (7): 100- 106
doi: 10.15951/j.tmgcxb.2016.07.009
2 杨振伟, 周广东, 伊廷华, 等 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J]. 工程力学, 2019, 36 (3): 63- 70
YANG Zhen-wei, ZHOU Guang-dong, YI Ting-hua, et al Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics, 2019, 36 (3): 63- 70
3 李宏男, 高东伟, 伊廷华 土木工程结构健康监测系统的研究状况与进展[J]. 力学进展, 2008, 38 (2): 151- 166
LI Hong-nan, GAO Dong-wei, YI Ting-hua Research status and progress of structural health monitoring system in civil engineering[J]. Advances in Mechanics, 2008, 38 (2): 151- 166
doi: 10.3321/j.issn:1000-0992.2008.02.002
4 MITRA M, GOPALAKRISHNAN S Guided wave based structural health monitoring: a review[J]. Smart Materials and Structures, 2016, 25 (5): 053001
doi: 10.1088/0964-1726/25/5/053001
5 LIM Y Y, KWONG K Z, LIEW W Y H, et al Non-destructive concrete strength evaluation using smart piezoelectric transducer: a comparative study[J]. Smart Materials and Structures, 2016, 25 (8): 085021
doi: 10.1088/0964-1726/25/8/085021
6 DUMOULIN C, KARAISKOS G, SENER J Y, et al Online monitoring of cracking in concrete structures using embedded piezoelectric transducers[J]. Smart Materials and Structures, 2014, 23 (11): 115016
doi: 10.1088/0964-1726/23/11/115016
7 TAGHAVIPOUR S, KHARKOVSKY S, KANG W H, et al Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers[J]. Smart Materials and Structures, 2017, 26 (10): 104009
doi: 10.1088/1361-665X/aa849a
8 HOWSER R, MOSLEHY Y, GU H, et al Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading[J]. Smart Materials and Structures, 2011, 20 (7): 075014
doi: 10.1088/0964-1726/20/7/075014
9 MICHAELS J E, MICHAELS T E Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52 (10): 1769- 1782
doi: 10.1109/TUFFC.2005.1561631
10 王彬文, 吕帅帅, 杨宇 基于能量图谱和孪生网络的导波损伤诊断方法[J]. 振动. 测试与诊断, 2021, 41 (1): 182- 189
WANG Bin-wen, LV Shuai-shuai, YANG Yu Guided wave damage diagnosis method based on energy spectrum and twin network[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41 (1): 182- 189
11 GUO T, WU L P, WANG C J, et al Damage detection in a novel deep-learning framework: a robust method for feature extraction[J]. Structural Health Monitoring, 2020, 19 (2): 424- 442
doi: 10.1177/1475921719846051
12 WANG F R, CHEN Z, SONG G B Smart crawfish: a concept of underwater multi-bolt looseness identification using entropy-enhanced active sensing and ensemble learning[J]. Mechanical Systems and Signal Processing, 2021, 149: 107186
doi: 10.1016/j.ymssp.2020.107186
13 胡俊亮, 钟继卫, 黄仕平, 等 基于可靠度指标的桥梁安全评估分级方法[J]. 哈尔滨工程大学学报, 2016, 37 (4): 550- 555
HU Jun-liang, ZHONG Ji-wei, HUANG Shi-ping, et al A method for bridge safety assessment based on reliability index[J]. Journal of Harbin Engineering University, 2016, 37 (4): 550- 555
doi: 10.11990/jheu.201507035
14 MOJTABA R, ALI H Structural damage identification through sensitivity-based finite element model updating and wavelet packet transform component energy[J]. Structures, 2021, 33: 4857- 4870
doi: 10.1016/j.istruc.2021.07.030
15 陈鑫, 朱劲松, 林阳子, 等 基于导波多点散射的在役拱桥吊杆腐蚀损伤识别[J]. 振动与冲击, 2021, 40 (19): 295- 301
CHEN Xin, ZHU Jin-song, LIN Yang-zi, et al Corrosion damage identification of suspenders of arch bridges in service based on guided wave multi-point scattering[J]. Journal of Vibration and Shock, 2021, 40 (19): 295- 301
doi: 10.13465/j.cnki.jvs.2021.19.037
16 陈敏. 火灾后混凝土损伤超声诊断方法及应用研究[D]. 长沙: 中南大学, 2008.
CHEN Min. Study on application and method of diagnosing flaw in concrete structure after fire using ultrasonic wave[D]. Changsha: Central South University, 2008.
17 李富强, 刘国华, 吴志根 基于双谱和奇异值分解的结构损伤试验[J]. 浙江大学学报: 工学版, 2012, 46 (10): 1872- 1879
LI Fu-qiang, LIU Guo-hua, WU Zhi-gen Experimental study of structural damage based on bispectral analysis and singular value decomposition[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (10): 1872- 1879
doi: 10.3785/j.issn.1008-973X.2012.10.021
18 ZHOU L, ZHENG Y, HUO L, et al Monitoring of bending stiffness of BFRP reinforced concrete beams using piezoceramic transducer enabled active sensing[J]. Smart Materials and Structures, 2020, 29 (10): 105012
doi: 10.1088/1361-665X/ab936d
19 ZHOU L, ZHENG Y, SONG G, et al Identification of the structural damage mechanism of BFRP bars reinforced concrete beams using smart transducers based on time reversal method[J]. Construction and Building Materials, 2019, 220 (1): 615- 627
20 孙威, 阎石, 焦莉, 等 基于压电波动法的混凝土裂缝损伤监测技术[J]. 工程力学, 2013, 30 (Supple.1): 206- 211
SUN Wei, YAN Shi, JIAO Li, et al Monitoring technology for crack damage of concrete structure based on piezoelectric wave method[J]. Engineering Mechanics, 2013, 30 (Supple.1): 206- 211
doi: 10.6052/j.issn.1000-4750.2012.04.S058
21 钱骥, 陈鑫, 蒋永, 等 基于导波能量谱的钢绞线腐蚀损伤识别研究[J]. 振动与冲击, 2018, 37 (20): 115- 121
QIAN Ji, CHEN Xin, JIANG Yong, et al Steel strands corrosion identification based on guide wave energy spectrum[J]. Journal of Vibration and Shock, 2018, 37 (20): 115- 121
doi: 10.13465/j.cnki.jvs.2018.20.018
22 赵学智, 叶邦彦, 陈统坚 基于小波-奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报, 2012, 48 (7): 37- 48
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48 (7): 37- 48
doi: 10.3901/JME.2012.07.037
23 阳洋, 梁晋秋, 袁爱鹏, 等 基于桥梁单元刚度损伤识别的新型间接量测方法研究[J]. 中国公路学报, 2021, 34 (2): 188- 198
YANG Yang, LIANG Jin-qiu, YUAN Ai-peng, et al Bridge element bending stiffness damage identification based on new indirect measurement method[J]. Chinese Journal of Highway and Transport, 2021, 34 (2): 188- 198
doi: 10.3969/j.issn.1001-7372.2021.02.009
24 孙威. 利用压电陶瓷的智能混凝土结构健康监测技术[D]. 大连: 大连理工大学, 2009.
SUN Wei. Health monitoring technology for smart concrete structures using piezoelectric ceramic [D]. Dalian: Dalian University of Technology, 2009.
[1] 黄华,赵秋舸,何再兴,李嘉然. 基于LSTM与牛顿迭代的两轴系统轮廓误差控制[J]. 浙江大学学报(工学版), 2023, 57(1): 10-20.
[2] 杨正银,胡健,姚建勇,沙英哲,宋秋雨. 基于自适应神经网络滑模观测器的容错控制[J]. 浙江大学学报(工学版), 2022, 56(8): 1656-1665.
[3] 贺俊,张雅声,尹灿斌. 基于深度学习的星载SAR工作模式鉴别[J]. 浙江大学学报(工学版), 2022, 56(8): 1676-1684.
[4] 牛伟宏,黄晓峰,祁伟,殷海兵,颜成钢. H.266/VVC分步全零块判决快速算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1285-1293, 1319.
[5] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[6] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[7] 于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
[8] 朱雅光,刘春潮,张亮. 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1107-1118.
[9] 何立,庞善民. 结合年龄监督和人脸先验的语音-人脸图像重建[J]. 浙江大学学报(工学版), 2022, 56(5): 1006-1016.
[10] 王云灏,孙铭会,辛毅,张博宣. 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报(工学版), 2022, 56(4): 702-710.
[11] 吴泽康,赵姗,李宏伟,姜懿芮. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.
[12] 陈扬钊,袁伟娜. 深度学习辅助上行免调度NOMA多用户检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 816-822.
[13] 张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.
[14] 程若然,赵晓丽,周浩军,叶翰辰. 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报(工学版), 2022, 56(3): 510-519, 530.
[15] 李广龙,申德荣,聂铁铮,寇月. 数据库外基于多模型的学习式查询优化方法[J]. 浙江大学学报(工学版), 2022, 56(2): 288-296.