航空航天技术 |
|
|
|
|
考虑非线性模型不确定性的航天器自主交会控制 |
张科文1,2( ),潘柏松1,2 |
1. 浙江工业大学 机械工程学院,浙江 杭州 310023 2. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310023 |
|
Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty |
Ke-wen ZHANG1,2( ),Bai-song PAN1,2 |
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China 2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China |
1 |
MAZAL L, PEREZ D, BEVILACQUA R, et al Spacecraft rendezvous by differential drag under uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (8): 1721- 1733
|
2 |
HE S, WANG J, LIN D Elliptical orbital spacecraft rendezvous without velocity measurement[J]. Journal of Aerospace Engineering, 2016, 29 (4): 04015084
|
3 |
BRENTARI M, URBINA S, ARZELIER D, et al A hybrid control framework for impulsive control of satellite rendezvous[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (4): 1537- 1551
|
4 |
ZANETTI R Optimal glideslope guidance for spacecraft rendezvous[J]. AIAA Journal of Guidance, Control, and Dynamics, 2011, 34 (5): 1593- 1597
|
5 |
谭天乐. 航天器交会对接的模型预测与反演制导控制[J]. 控制与决策, 2019, 34(4): 793-798. TAN Tian-le. Model predictive and inversive guidance and control for spacecraft rendezvous and docking [J]. Control and Decision, 2019, 34(4): 793-798.
|
6 |
李蒙, 马晓兵 航天器远程自主交会方法设计与实现[J]. 宇航学报, 2017, 38 (9): 911- 918 LI Meng, MA Xiao-bing Development of long distance autonomous rendezvous for spacecraft[J]. Journal of Astronautics, 2017, 38 (9): 911- 918
doi: 10.3873/j.issn.1000-1328.2017.09.003
|
7 |
胡勇, 徐李佳, 解永春. 针对失控翻滚目标航天器的交会对接控制[J]. 宇航学报, 2015, 36(1): 47-57. HU Yong, XU Li-jia, XIE Yong-chun. Control for rendezvous and docking with a tumbling target spacecraft [J]. Journal of Astronautics, 2015, 36(1): 47-57.
|
8 |
靳锴, 罗建军, 郑茂章, 等 考虑导航误差和摄动影响的椭圆轨道最优交会制导[J]. 控制理论与应用, 2018, 35 (10): 1484- 1493 JIN Kai, LUO Jian-jun, ZHENG Mao-zhang, et al Guidance design with navigation errors for relative motion in noncircular perturbed orbits[J]. Control Theory and Application, 2018, 35 (10): 1484- 1493
|
9 |
ZHANG K, DEMETRIOU M A. Synthesis of adaptive controllers for spacecraft rendezvous maneuvers using nonlinear models of relative motion [C]// Proceedings of the IEEE Conference on Decision and Control. Las Vegas: IEEE, 2016: 12-14.
|
10 |
ZHANG K, DEMETRIOU M A. Adaptive controllers for spacecraft rendezvous based on nonlinear model with unknown parameters [C]// Proceedings of AIAA Guidance, Navigation, and Control Conference. Grapevine: AIAA, 2017: 9-13.
|
11 |
KALUR A, SHIVAKUMAR K, SCHMID M, et al. Adaptive control for spacecraft formation flying with solar radiation pressure and reduction of secular drift [C]// Proceedings of the American Control Conference. Boston: [s. n. ], 2016: 6-8.
|
12 |
IMANI A, BEIGZADEH B Robust control of spacecraft rendezvous on elliptical orbits: optimal sliding mode and backstepping sliding mode approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (10): 1975- 1989
|
13 |
INNOCENTI M, TARTAGLIA V. Game theoretic strategies for spacecraft rendezvous and motion synchronization [C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. San Diego: AIAA, 2016: 4-8.
|
14 |
ZHANG G, YE D Optimal short-range rendezvous using on–off constant thrust[J]. Aerospace Science and Technology, 2017, 69: 209- 217
|
15 |
FARRELL J A, POLYCARPOU M M. Adaptive approximation based control: unifying neural, fuzzy and traditional adaptive approximation approaches [M]. New York: Wiley, 2006: 46-48.
|
16 |
ROVITHAKIS G A, CHRISTODOULOU M A. Adaptive control with recurrent high-order neural networks: theory and industrial applications [M]. [S. l. ]: Springer, 2012: 9-27.
|
17 |
GE S, HANG C, LEE T, et al. Stable adaptive neural network control [M]. New York: Springer, 2013: 27-46.
|
18 |
SPOONER J, MAGGIORE M, ORDONEZ R, et al. Stable adaptive control and estimation for nonlinear systems: neural and fuzzy approximator techniques [M]. New York: Wiley, 2002: 6-10.
|
19 |
ALFRIEND K, VADALI R, GURFIL P, et al. Spacecraft formation flying: dynamics, control and navigation [M]. Oxford: Butterworth-Heinemann, 2009: 60-64.
|
20 |
CURTIS H D. Orbital mechanics for engineering students [M]. Oxford: Butterworth-Heinemann, 2013: 66-72.
|
21 |
KAPLAN M H. Modern spacecraft dynamics and control [M]. [S. l. ]: Wiley, 1976.
|
22 |
ZHANG T, GE S S, HANG C C Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica, 2000, 36 (12): 1835- 1846
|
23 |
LEWIS F L, YESILDIREK A, LIU K Multilayer neural-net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks, 1996, 7 (2): 388- 399
|
24 |
WANG D, HUANG J Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica, 2002, 38 (8): 1365- 1372
|
25 |
HORN R A, JOHNSON C R. Matrix analysis [M]. 2nd ed. Cambridge: Cambridge University Press, 2013.
|
26 |
KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design [M]. New York: Wiley, 1995: 99-110.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|