Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 833-842    DOI: 10.3785/j.issn.1008-973X.2022.04.024
航空航天技术     
考虑非线性模型不确定性的航天器自主交会控制
张科文1,2(),潘柏松1,2
1. 浙江工业大学 机械工程学院,浙江 杭州 310023
2. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310023
Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty
Ke-wen ZHANG1,2(),Bai-song PAN1,2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(1412 KB)   HTML
摘要:

考虑航天器交会模型不确定性的问题,提出基于一般非线性相对运动方程的自适应控制策略. 针对复杂非线性系统中由外部扰动及目标星轨道参数引起的线性与非线性不确定性问题,通过自适应神经网络对模型结构进行参数化近似. 结合自适应反推技术和李雅普诺夫稳定方法进行自适应控制器设计,能够实现控制目标,保证所得闭环系统的渐近稳定性. 为了探究同时存在模型不确定性和输入约束的情况下航天器相对运动的自适应控制设计,提出辅助控制系统来分析和解决输入约束的影响. 针对相对运动提出的自适应控制策略保证了闭环系统的稳定性,使得模型未知参数的自适应估计满足最终一致有界性. 对不同案例分析比较的数值仿真结果验证了提出控制方法的有效性.

关键词: 航天器交会非线性模型不确定性神经网络自适应控制    
Abstract:

An adaptive control strategy based on the general nonlinear relative motion equation was proposed by considering the uncertainty of the spacecraft rendezvous model. A parameterization via adaptive neural networks was implemented for the linear and nonlinear uncertainties in the complex nonlinear system caused by the external disturbances and the orbital parameters of the target spacecraft. Both the backstepping technique and the Lyapunov method were utilized to achieve the control targets and guarantee the asymptotic stability of the resulting closed-loop system. An auxiliary control system was proposed to analyze the effect of input constraints in order to explore the adaptive control design of the spacecraft relative motion in the presence of both model uncertainty and input constraints. The adaptive control strategy proposed for relative motion ensured the stability of the closed-loop system, as well as the uniform ultimate boundedness of the adaptive estimation of the unknown parameters. The effectiveness of the proposed method was verified by the numerical results via the analysis and comparison of different cases.

Key words: spacecraft rendezvous    nonlinear model    uncertainty    neural network    adaptive control
收稿日期: 2021-05-08 出版日期: 2022-04-24
CLC:  V 448  
基金资助: 浙江省“尖兵” “领雁”研发攻关计划资助项目(2022C01026);浙江工业大学独立研究项目(2018102007429)
作者简介: 张科文(1987—),女,讲师,从事动力学分析与控制方法设计、智能制造系统集成技术的研究. orcid.org/0000-0001-8507-9229.E-mail: kzhang2@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张科文
潘柏松

引用本文:

张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.

Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.024        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/833

图 1  航天器交会对接
图 2  控制器设计框图
图 3  案例1:在没有不确定性和输入饱和下的仿真结果
图 4  案例2:具有参数不确定性情况的仿真结果
图 5  案例3:同时具有参数不确定性和输入饱和情况的仿真结果
图 6  存在饱和与不存在饱和时的控制输入对比
1 MAZAL L, PEREZ D, BEVILACQUA R, et al Spacecraft rendezvous by differential drag under uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (8): 1721- 1733
2 HE S, WANG J, LIN D Elliptical orbital spacecraft rendezvous without velocity measurement[J]. Journal of Aerospace Engineering, 2016, 29 (4): 04015084
3 BRENTARI M, URBINA S, ARZELIER D, et al A hybrid control framework for impulsive control of satellite rendezvous[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (4): 1537- 1551
4 ZANETTI R Optimal glideslope guidance for spacecraft rendezvous[J]. AIAA Journal of Guidance, Control, and Dynamics, 2011, 34 (5): 1593- 1597
5 谭天乐. 航天器交会对接的模型预测与反演制导控制[J]. 控制与决策, 2019, 34(4): 793-798.
TAN Tian-le. Model predictive and inversive guidance and control for spacecraft rendezvous and docking [J]. Control and Decision, 2019, 34(4): 793-798.
6 李蒙, 马晓兵 航天器远程自主交会方法设计与实现[J]. 宇航学报, 2017, 38 (9): 911- 918
LI Meng, MA Xiao-bing Development of long distance autonomous rendezvous for spacecraft[J]. Journal of Astronautics, 2017, 38 (9): 911- 918
doi: 10.3873/j.issn.1000-1328.2017.09.003
7 胡勇, 徐李佳, 解永春. 针对失控翻滚目标航天器的交会对接控制[J]. 宇航学报, 2015, 36(1): 47-57.
HU Yong, XU Li-jia, XIE Yong-chun. Control for rendezvous and docking with a tumbling target spacecraft [J]. Journal of Astronautics, 2015, 36(1): 47-57.
8 靳锴, 罗建军, 郑茂章, 等 考虑导航误差和摄动影响的椭圆轨道最优交会制导[J]. 控制理论与应用, 2018, 35 (10): 1484- 1493
JIN Kai, LUO Jian-jun, ZHENG Mao-zhang, et al Guidance design with navigation errors for relative motion in noncircular perturbed orbits[J]. Control Theory and Application, 2018, 35 (10): 1484- 1493
9 ZHANG K, DEMETRIOU M A. Synthesis of adaptive controllers for spacecraft rendezvous maneuvers using nonlinear models of relative motion [C]// Proceedings of the IEEE Conference on Decision and Control. Las Vegas: IEEE, 2016: 12-14.
10 ZHANG K, DEMETRIOU M A. Adaptive controllers for spacecraft rendezvous based on nonlinear model with unknown parameters [C]// Proceedings of AIAA Guidance, Navigation, and Control Conference. Grapevine: AIAA, 2017: 9-13.
11 KALUR A, SHIVAKUMAR K, SCHMID M, et al. Adaptive control for spacecraft formation flying with solar radiation pressure and reduction of secular drift [C]// Proceedings of the American Control Conference. Boston: [s. n. ], 2016: 6-8.
12 IMANI A, BEIGZADEH B Robust control of spacecraft rendezvous on elliptical orbits: optimal sliding mode and backstepping sliding mode approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (10): 1975- 1989
13 INNOCENTI M, TARTAGLIA V. Game theoretic strategies for spacecraft rendezvous and motion synchronization [C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. San Diego: AIAA, 2016: 4-8.
14 ZHANG G, YE D Optimal short-range rendezvous using on–off constant thrust[J]. Aerospace Science and Technology, 2017, 69: 209- 217
15 FARRELL J A, POLYCARPOU M M. Adaptive approximation based control: unifying neural, fuzzy and traditional adaptive approximation approaches [M]. New York: Wiley, 2006: 46-48.
16 ROVITHAKIS G A, CHRISTODOULOU M A. Adaptive control with recurrent high-order neural networks: theory and industrial applications [M]. [S. l. ]: Springer, 2012: 9-27.
17 GE S, HANG C, LEE T, et al. Stable adaptive neural network control [M]. New York: Springer, 2013: 27-46.
18 SPOONER J, MAGGIORE M, ORDONEZ R, et al. Stable adaptive control and estimation for nonlinear systems: neural and fuzzy approximator techniques [M]. New York: Wiley, 2002: 6-10.
19 ALFRIEND K, VADALI R, GURFIL P, et al. Spacecraft formation flying: dynamics, control and navigation [M]. Oxford: Butterworth-Heinemann, 2009: 60-64.
20 CURTIS H D. Orbital mechanics for engineering students [M]. Oxford: Butterworth-Heinemann, 2013: 66-72.
21 KAPLAN M H. Modern spacecraft dynamics and control [M]. [S. l. ]: Wiley, 1976.
22 ZHANG T, GE S S, HANG C C Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica, 2000, 36 (12): 1835- 1846
23 LEWIS F L, YESILDIREK A, LIU K Multilayer neural-net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks, 1996, 7 (2): 388- 399
24 WANG D, HUANG J Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica, 2002, 38 (8): 1365- 1372
25 HORN R A, JOHNSON C R. Matrix analysis [M]. 2nd ed. Cambridge: Cambridge University Press, 2013.
26 KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design [M]. New York: Wiley, 1995: 99-110.
[1] 王云灏,孙铭会,辛毅,张博宣. 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报(工学版), 2022, 56(4): 702-710.
[2] 吴泽康,赵姗,李宏伟,姜懿芮. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.
[3] 陈扬钊,袁伟娜. 深度学习辅助上行免调度NOMA多用户检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 816-822.
[4] 程若然,赵晓丽,周浩军,叶翰辰. 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报(工学版), 2022, 56(3): 510-519, 530.
[5] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
[6] 王婷,朱小飞,唐顾. 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报(工学版), 2022, 56(2): 322-328.
[7] 温佩芝,陈君谋,肖雁南,温雅媛,黄文明. 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报(工学版), 2022, 56(2): 213-224.
[8] 何飞,金苍宏,吴明晖. 基于意图识别的不确定性行为序列预测方法[J]. 浙江大学学报(工学版), 2022, 56(2): 254-262.
[9] 李广龙,申德荣,聂铁铮,寇月. 数据库外基于多模型的学习式查询优化方法[J]. 浙江大学学报(工学版), 2022, 56(2): 288-296.
[10] 任松,朱倩雯,涂歆玥,邓超,王小书. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.
[11] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[12] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[13] 王飞,徐维祥. 基于LSTM神经网络改进的路阻函数模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1065-1071.
[14] 郝晏,丁雅斌,付津昇. 机器人加工系统累积误差逐级闭环优化策略[J]. 浙江大学学报(工学版), 2021, 55(6): 1142-1149.
[15] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.