土木工程、交通工程 |
|
|
|
|
公交专用道条件下公交车辆轨迹的Seq2Seq预测 |
张楠( ),董红召*( ),佘翊妮 |
浙江工业大学 智能交通系统联合研究所,浙江 杭州 310023 |
|
Seq2Seq prediction of bus trajectory on exclusive bus lanes |
Nan ZHANG( ),Hong-zhao DONG*( ),Yi-ni SHE |
Joint Institute of Intelligent Transportation System, Zhejiang University of Technology, Hangzhou 310023, China |
1 |
LI L, JIANG R, HE Z B, et al Trajectory data-based traffic flow studies: a revisit[J]. Transportation Research Part C, 2020, 114: 225- 240
doi: 10.1016/j.trc.2020.02.016
|
2 |
YAO J, TAN C, TANG K An optimization model for arterial coordination control based on sampled vehicle trajectories: the stream model[J]. Transportation Research Part C, 2019, 109: 211- 232
doi: 10.1016/j.trc.2019.10.014
|
3 |
WANG L, ABDEL-ATY M, MA W J, et al Quasi-vehicle-trajectory-based real-time safety analysis for expressways[J]. Transportation Research Part C, 2019, 103: 30- 38
doi: 10.1016/j.trc.2019.04.003
|
4 |
XIEK, OZBAY K, YANG H, et al Mining automatically extracted vehicle trajectory data for proactive safety analytics[J]. Transportation Research Part C, 2019, 106: 61- 72
doi: 10.1016/j.trc.2019.07.004
|
5 |
LIU J, HAN K, CHEN X, et al Spatial-temporal inference of urban traffic emissions based on taxi trajectories and multi-source urban data[J]. Transportation Research Part C, 2019, 106: 145- 165
doi: 10.1016/j.trc.2019.07.005
|
6 |
HU J, PARK B B, LEE Y J Coordinated transit signal priority supporting transit progression under connected vehicle technology[J]. Transportation Research Part C, 2015, 55: 393- 408
doi: 10.1016/j.trc.2014.12.005
|
7 |
HU J, PARK B B, LEE Y J Transit signal priority accommodating conflicting requests under connected vehicles technology[J]. Transportation Research Part C, 2016, 69: 173- 192
doi: 10.1016/j.trc.2016.06.001
|
8 |
TRUONG L T, CURRIE G, WALLANCE M, et al Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1269- 1277
doi: 10.1109/TITS.2018.2844199
|
9 |
KIM H, CHENG Y, CHANG G Variable signal progression bands for transit vehicles under dwell time uncertainty and traffic queues[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 109- 122
doi: 10.1109/TITS.2018.2801567
|
10 |
WU W, HEAD L, YAN S H, et al Development and evaluation of bus lanes with intermittent and dynamic priority in connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2018, 22 (4): 301- 310
doi: 10.1080/15472450.2017.1313704
|
11 |
BERREBI S J, HANS E, CHIABAUT N, et al Comparing bus holding methods with and without real-time predictions[J]. Transportation Research Part C, 2018, 87: 197- 211
doi: 10.1016/j.trc.2017.07.012
|
12 |
LIM B, ZOHREN S. Time series forecasting with deep learning: a survey [EB/OL]. [2020-09-27]. https://arxiv.org/abs/2004.13408.
|
13 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
14 |
CHO K, VAN MERRIUENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: [s.n.], 2014: 1724–1734.
|
15 |
CHO K, VAN MERRIUENBOER B, BAHDANAU D. On the properties of neural machine translation: encoder-decoder approaches [EB/OL]. [2020-10-01]. https://arxiv.org/abs/1409.1259.
|
16 |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 2014 Advances in Neural Information Processing Systems. Montreal: [s.n.], 2014: 3104–3112.
|
17 |
WANG S, CAO J, CHEN H, et al SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction[J]. ACM Transactions on Spatial Algorithms and Systems (TSAS), 2020, 6 (4): 1- 24
|
18 |
QIN Y, SONG D, CHEN H, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]// Proceedings of 26th International Joint Conference on Artificial Intelligence. Melbourne: [s.n.], 2017: 2627-2633.
|
19 |
KIM B D, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]// Proceedings of the IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama: [s.n.], 2017: 399-404.
|
20 |
PARK SH, KIM B D, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu: [s.n.], 2018: 1672-1678.
|
21 |
MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6 (1): 175- 185
|
22 |
SEN R, YU H F, DHILLON I S. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting[C]// Proceedings of Advances in Neural Information Processing Systems (NIPS). Vancouver: [s.n.], 2019: 4837-4846.
|
23 |
BOX G, JENKIN G. Time Series analysis: forecasting and control[M]. San Francisco: Holden-Day, 1970.
|
24 |
BRAHIM-BELHOUARI S, BERMAK A Gaussian process for nonstationary time series prediction[J]. Computational Stats and Data Analysis, 2004, 47 (4): 705- 712
doi: 10.1016/j.csda.2004.02.006
|
25 |
AARON VAN DEN O, DIELEMAN S, ZEN H, et al. Wavenet: a generative model for raw audio [EB/OL]. [2020-10-01]. https://arxiv.org/abs/1609.03499.
|
26 |
SORDONI A, BENGIO Y, VAHABI H, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: [s.n.], 2015: 553-562.
|
27 |
LOSHCILOV I, HUTTER F. Decoupled weight decay regularization[C]// Proceedings of 7th International Conference on Learning Representations. New Orleans: [s.n.], 2019.
|
28 |
KINGMA D, BA J. Adam: a method for stochastic optimization[C]// Proceedings of 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015.
|
29 |
DONG H Z, ZHAO C X, FU F J Sharing bus lanes: a new lanes multiplexing-based method using a dynamic time slice policy[J]. Transport, 2018, 1- 38
|
30 |
BAHDANAU D, KYUNGHYUN C K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]// Proceedings of 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015.
|
31 |
HOU L, XIN L, LI E S, et al Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (11): 4615- 4625
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|