电气工程 |
|
|
|
|
改进的稀疏网格配点法对EIT电导率分布的不确定性量化 |
李颖1,2( ),王冠雄1,闫伟1,赵营鸽2,马重蕾1 |
1. 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室,天津 300130 2. 河北工业大学 天津市生物电工与智能健康重点实验室,天津 300130 |
|
Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution |
Ying LI1,2( ),Guan-xiong WANG1,Wei YAN1,Ying-ge ZHAO2,Chong-lei MA1 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China 2. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China |
引用本文:
李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.021
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/613
|
1 |
徐灿华, 董秀珍 生物电阻抗断层成像技术及其临床研究进展[J]. 高电压技术, 2014, 40 (12): 3738- 3745 XU Can-hua, DONG Xiu-zhen Advancements in electrical impedance tomography and its clinical applications[J]. High Voltage Engineering, 2014, 40 (12): 3738- 3745
|
2 |
RYMARCZYK T, SIKORA J, ADAMKIEWICZ P, et al. Analysis and monitoring of flood embankments through image reconstruction based on electrical impedance tomography [C]// Proceedings of the 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering(ISEF). Nancy: IEEE, 2019: 1-2.
|
3 |
VENKATRATNAM C, NAGI F Spatial resolution in electrical impedance tomography: a topical review[J]. Journal of Electrical Bioimpedance, 2017, 8 (1): 66- 78
doi: 10.5617/jeb.3350
|
4 |
KUWAHARA Y, NOZAKI A, FUJII K Large scale analysis of complex permittivity of breast cancer in microwave band[J]. Advances in Breast Cancer Research, 2020, 9 (4): 101- 109
doi: 10.4236/abcr.2020.94008
|
5 |
ZURBUCHEN U, POCH F, GEMEINHARDT O, et al Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors[J]. Acta Radiologica, 2017, 58 (2): 164- 169
doi: 10.1177/0284185116639765
|
6 |
OH T I, JEONG W C, MCEWAN A, et al Feasib-ility of magnetic resonance electrical impedance tomography (MREIT) conductivity imaging to evaluate brain abscess lesion: in vivo canine model[J]. Journal of Magnetic Resonance Imaging, 2013, 38 (1): 189- 197
doi: 10.1002/jmri.23960
|
7 |
YERO D D, GONZáLEZ F G, TROYEN D V, et al Dielectric properties of ex vivo porcine liver tissue characterized at frequencies between 5 and 500 kHz when heated at different rates[J]. IEEE Transactions on Biomedical Engineering, 2018, 65 (11): 2560- 2568
doi: 10.1109/TBME.2018.2807981
|
8 |
MCINTYRE C C, MORI S, SHERMAN D L, et al Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus[J]. Clinical Neurophysiology, 2004, 115 (3): 589- 595
doi: 10.1016/j.clinph.2003.10.033
|
9 |
WANG J Y, ZHENG X Q Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142 (7): 070801
doi: 10.1115/1.4047179
|
10 |
汤涛, 周涛 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45 (7): 891- 928 TANG Tao, ZHOU Tao Recent developments in high order numerical methods for uncertainty quantification[J]. Scientia Sinica: Mathematica, 2015, 45 (7): 891- 928
doi: 10.1360/N012014-00218
|
11 |
HELTON J C, DAVIS F J Latin hypercube samp-ling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering and System Safety, 2003, 81 (1): 23- 69
doi: 10.1016/S0951-8320(03)00058-9
|
12 |
GHANEM R G, SPANOS P D. Stochastic finite elements: a spectral approach [M]. New York: Springer, 1991: 45-66.
|
13 |
XIU D B, HESTHAVEN J S High-order colloca-tion methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005, 27 (3): 1118- 1139
doi: 10.1137/040615201
|
14 |
NOBILE F, TEMPONE R, WEBSTER C G A sparse grid stochastic collocation method for partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2008, 46 (5): 2309- 2345
doi: 10.1137/060663660
|
15 |
HYV?NEN N, LEINONEN M Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography[J]. SIAM/ASA Journal on Uncertainty Quantification, 2015, 3 (1): 998- 1019
doi: 10.1137/140999050
|
16 |
SUN X, LEE E, CHOI J Quantification of measurement error effects on conductivity reconstruction in electrical impedance tomography[J]. Inverse Problems in Science and Engineering, 2020, 28 (12): 1669- 1693
doi: 10.1080/17415977.2020.1762595
|
17 |
KOLEHMAINEN V, LASSAS M, OLA P The inverse conductivity problem with an imperfectly known boundary[J]. SIAM Journal on Applied Mathematics, 2005, 66 (2): 365- 383
doi: 10.1137/040612737
|
18 |
BOYLE A, CRABB M G, JEHL M, et al Methods for calculating the electrode position Jacobian for impedance imaging[J]. Physiological Measurement, 2017, 38 (3): 555- 574
doi: 10.1088/1361-6579/aa5b78
|
19 |
NISSINEN A, HEIKKINEN L M, KOLEHMAINEN V, et al Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography[J]. Measurement Science and Technology, 2009, 20 (10): 105504
doi: 10.1088/0957-0233/20/10/105504
|
20 |
ABDEDOU A, SOULAIMANI A A non-intrusive B-splines Bézier elements-based method for uncertainty propagation[J]. Computer Method in Applied Mechanics and Engineering, 2019, 345: 774- 804
doi: 10.1016/j.cma.2018.10.047
|
21 |
WAN H P, REN W X, TODD M D Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics[J]. Mechanical Systems and Signal Processing, 2020, 142: 106732
doi: 10.1016/j.ymssp.2020.106732
|
22 |
SMOLYAK S A Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Reports of the Academy of Sciences of the USSR, 1963, 4: 240- 243
|
23 |
熊芬芬, 杨树兴, 刘宇, 等. 工程概论不确定性分析方法 [M]. 北京: 科学出版社, 2015: 169-174.
|
24 |
肖思男, 吕震宙, 王薇 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学 力学 天文学, 2018, 48 (1): 014601 XIAO Si-nan, LV Zhen-zhou, WANG Wei A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2018, 48 (1): 014601
doi: 10.1360/SSPMA2016-00516
|
25 |
NI F, NIJHUIS M, NGUYEN P H Variance-based global sensitivity analysis for power systems[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1670- 1682
doi: 10.1109/TPWRS.2017.2719046
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|