计算机技术、信息工程 |
|
|
|
|
深度学习辅助上行免调度NOMA多用户检测方法 |
陈扬钊( ),袁伟娜*( ) |
华东理工大学 信息科学与工程学院,上海 200237 |
|
Deep learning aided multi-user detection for up-link grant-free NOMA |
Yang-zhao CHEN( ),Wei-na YUAN*( ) |
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China |
1 |
BOCKELMANN C, PRATAS N, NIKOPOUR H, et al Massive machine-type communications in 5G: physical and MAC-layer solutions[J]. IEEE Communications Magazine, 2016, 54 (9): 59- 65
doi: 10.1109/MCOM.2016.7565189
|
2 |
CIRIK A C, BALASUBRAMANYA N M, LAMPE L Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7 (1): 46- 49
doi: 10.1109/LWC.2017.2752165
|
3 |
HONG J, CHOI W, RAO B D Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14 (2): 998- 1010
doi: 10.1109/TWC.2014.2363165
|
4 |
TROPP J A, GILBERT A C Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4655- 4666
doi: 10.1109/TIT.2007.909108
|
5 |
DAI W, MILENKOVIC O Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55 (5): 2230- 2249
doi: 10.1109/TIT.2009.2016006
|
6 |
NEEDELL D, TROPP J A Cosamp: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26 (3): 301- 321
doi: 10.1016/j.acha.2008.07.002
|
7 |
WEI C, LIU H, ZHANG Z, et al Approximate message passing-based joint user activity and data detection for NOMA[J]. IEEE Communications Letters, 2017, 21 (3): 640- 643
doi: 10.1109/LCOMM.2016.2624297
|
8 |
WANG B, DAI L, MIR T, et al Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20 (7): 1473- 1476
|
9 |
ABEBE A T, KANG C G Iterative order recursive least square estimation for exploiting frame-wise sparsity in compressive sensing-based MTC[J]. IEEE Communications Letters, 2016, 20 (5): 1018- 1021
doi: 10.1109/LCOMM.2016.2539255
|
10 |
CUI Y, XU W, WANG Y, et al Side-information aided compressed multi-user detection for up-link grant-free NOMA[J]. IEEE Transactions on Wireless Communications, 2020, 19 (11): 7720- 7731
doi: 10.1109/TWC.2020.3015760
|
11 |
DU Y, CHENG C, DONG B, et al Block-sparsity-based multiuser detection for uplink grant-free NOMA[J]. IEEE Transactions on Wireless Communications, 2018, 17 (12): 7894- 7909
doi: 10.1109/TWC.2018.2872594
|
12 |
WANG B, DAI L, ZHANG Y, et al Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20 (11): 2320- 2323
doi: 10.1109/LCOMM.2016.2602264
|
13 |
DU Y, DONG B, CHEN Z, et al Efficient multi-user detection for uplink grant-free NOMA: prior-information aided adaptive compressive sensing perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (99): 2812- 2828
|
14 |
YE H, LI G Y, JUANG B Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communication Letters, 2017, 7 (1): 114- 117
|
15 |
GUAN G, HUANG H, SONG Y, et al Deep learning for an effective nonorthogonal multiple access scheme[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (9): 8440- 8450
doi: 10.1109/TVT.2018.2848294
|
16 |
KIM W, AHN Y, SHIM B Deep neural network based active user detection for grant-free NOMA systems[J]. IEEE Transactions on Communications, 2019, 68 (4): 2143- 2155
|
17 |
MIAO X, GUO D, LI X Grant-free NOMA with device activity learning using long short-term memory[J]. IEEE Wireless Communication Letters, 2020, 9 (7): 981- 984
|
18 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
19 |
WANG J, KWON S, SHIM S Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60 (12): 6202- 6216
doi: 10.1109/TSP.2012.2218810
|
20 |
OYERINDE O O. Multiuser detector for uplink grant free NOMA systems based on modified subspace pursuit algorithm [C]// 2018 12th International Conference on Signal Processing and Communication Systems. [S. l. ]: IEEE, 2018: 1-6.
|
21 |
袁伟娜, 严秋 基于压缩感知的FBMC/OQAM系统信道估计方法[J]. 通信学报, 2019, 40 (12): 98- 104 YUAN Wei-na, YAN Qiu Channel estimation method based on compressive sensing for FBMC/OQAM system[J]. Journal on Communications, 2019, 40 (12): 98- 104
doi: 10.11959/j.issn.1000-436x.2019239
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|