计算机技术、自动控制技术 |
|
|
|
|
基于深度神经网络的多因素感知终端换机预测模型 |
陈纬奇1( ),王敬昌2,陈岭1,*( ),杨勇勤3,吴勇2 |
1. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 2. 浙江鸿程计算机系统有限公司,浙江 杭州 310009 3. 中国电信浙江分公司,浙江 杭州 310040 |
|
Prediction model of multi-factor aware mobile terminal replacement based on deep neural network |
Wei-qi CHEN1( ),Jing-chang WANG2,Ling CHEN1,*( ),Yong-qin YANG3,Yong WU2 |
1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China 2. Zhejiang Hongcheng Computer Systems Limited Company, Hangzhou 310009, China 3. Zhejiang Branch of China Telecom Limited Company, Hangzhou 310040, China |
引用本文:
陈纬奇,王敬昌,陈岭,杨勇勤,吴勇. 基于深度神经网络的多因素感知终端换机预测模型[J]. 浙江大学学报(工学版), 2021, 55(1): 109-115.
Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.013
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I1/109
|
1 |
ZHANG K, CAI Z, LV T. The research on the pricing system of mobile value-added service for 3G [C]//International Conference on Management Science and Engineering. Harbin: IEEE, 2007: 234-238.
|
2 |
CHEN J, GUO J. A choreography approach for value-added services creation [C]//International Conference on Wireless Communications, Networking and Mobile Computing. Beijing: IEEE, 2009: 1-4.
|
3 |
BUGHIN J Reaping the benefits of big data in telecom[J]. Journal of Big Data, 2016, 3 (1): 14
doi: 10.1186/s40537-016-0048-1
|
4 |
ZHAO Z, GUO J, DING E, et al. Terminal replacement prediction based on deep belief networks [C]//International Conference on Network and Information Systems for Computers. Wuhan: IEEE, 2015: 255-258.
|
5 |
HADDEN J, TIWARI A, ROY R, et al Churn prediction: does technology matter[J]. International Journal of Intelligent Technology, 2006, 1 (2): 104- 110
|
6 |
SHAO G, CHEN W, CHENG X, et al. Telecom big data based user analysis and application in telecom industry [C]//International Conference on 5G for Future Wireless Networks. Beijing: Springer, 2017: 99-109.
|
7 |
ZHANG Z, LIN H, LIU K, et al A hybrid fuzzy-based personalized recommender system for telecom products/services[J]. Information Sciences, 2013, 235: 117- 129
doi: 10.1016/j.ins.2013.01.025
|
8 |
YANG D, WU Z, WANG X, et al. Predicting replacement of smartphones with mobile App usage [C]//International Conference on Web Information Systems Engineering. Shanghai: Springer, 2016: 343-351.
|
9 |
HUANG B, KECHADI M, BUCKLEY B Customer churn prediction in telecommunications[J]. Expert Systems with Applications, 2012, 39 (1): 1414- 1425
doi: 10.1016/j.eswa.2011.08.024
|
10 |
VAEFIADIS T, DIAMANTARAS K, SARIGIANNIDIS G, et al A comparison of machine learning techniques for customer churn prediction[J]. Simulation Modelling Practice and Theory, 2015, 55: 1- 9
doi: 10.1016/j.simpat.2015.03.003
|
11 |
XIA G, JIN D Model of customer churn prediction on support vector machine[J]. Systems Engineering: Theory and Practice, 2008, 28 (1): 71- 77
doi: 10.1016/S1874-8651(09)60003-X
|
12 |
IDRIS A, ASIFULLAH K, YEON S. Genetic programming and adaboosting based churn prediction for telecom [C]//International Conference on Systems, Man, and Cybernetics. Seoul: IEEE, 2012: 1328-1332.
|
13 |
JAMIL S, ASIFULLAH K. Churn comprehension analysis for telecommunication industry using ALBA [C]// International Conference on Emerging Technologies. Islamabad: IEEE, 2016: 1-5.
|
14 |
LAURILA J, GATICA-PEREZ D, AAD I, et al From big smartphone data to worldwide research: the mobile data challenge[J]. Pervasive and Mobile Computing, 2013, 9 (6): 752- 771
doi: 10.1016/j.pmcj.2013.07.014
|
15 |
STONE C. Optimal global rates of convergence for nonparametric regression [J]. The Annals of Statistics. 1982, 10(4): 1040-1053.
|
16 |
LIAN J, ZHOU X, ZHANG F, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems [C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1754-1763.
|
17 |
SUTSKEVER I, VINYALS O, LE Q. Sequence to sequence learning with neural networks [C]//Advances in Neural Information Processing Systems. Montreal: MIT Press, 2014: 3104-3112.
|
18 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
19 |
熊冰妍, 王国胤, 邓维斌 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报: 工学版, 2015, 45 (5): 36- 42 XIONG Bing-yan, WANG Guo-yin, DENG Wei-bin Hierarchical cost sensitive decision tree and its application in the prediction of the mobile phone replacement[J]. Journal of Shandong University: Engineering Science, 2015, 45 (5): 36- 42
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|