计算机科学与人工智能 |
|
|
|
|
基于门控循环单元的多因素感知短期游客人数预测模型 |
王敬昌1( ),陈岭2,*( ),余珊珊2,蒋晨书2,吴勇1 |
1. 浙江鸿程计算机系统有限公司,浙江 杭州 310009 2. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 |
|
Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit |
Jing-chang WANG1( ),Ling CHEN2,*( ),Shan-shan YU2,Chen-shu JIANG2,Yong WU1 |
1. Zhejiang Hongcheng Computer Systems Company Limited, Hangzhou 310009, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China |
引用本文:
王敬昌,陈岭,余珊珊,蒋晨书,吴勇. 基于门控循环单元的多因素感知短期游客人数预测模型[J]. 浙江大学学报(工学版), 2019, 53(12): 2357-2364.
Jing-chang WANG,Ling CHEN,Shan-shan YU,Chen-shu JIANG,Yong WU. Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2357-2364.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.013
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2357
|
1 |
CHU F L Forecasting tourism demand with ARMA-based methods[J]. Tourism Management, 2009, 30 (5): 740- 751
doi: 10.1016/j.tourman.2008.10.016
|
2 |
GUSTAVSSON P, NORDSTROM J The impact of seasonal unit roots and vector ARMA modelling on forecasting monthly tourism flows[J]. Tourism Economics, 2001, 7 (2): 117- 133
doi: 10.5367/000000001101297766
|
3 |
BOX G E P, PIERCE D A Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J]. Journal of the American Statistical Association, 1970, 65 (332): 1509- 1526
doi: 10.1080/01621459.1970.10481180
|
4 |
AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques [M]. [S. l.]: Transportation Research Board, 1979.
|
5 |
LIM C, MCALEER M Time series forecasts of international travel demand for Australia[J]. Tourism Management, 2002, 23 (4): 389- 396
doi: 10.1016/S0261-5177(01)00098-X
|
6 |
PAI P F, HONG W C An improved neural network model in forecasting arrivals[J]. Annals of Tourism Research, 2005, 32 (4): 1138- 1141
doi: 10.1016/j.annals.2005.01.002
|
7 |
JANACEK G Time series analysis forecasting and control[J]. Journal of Time Series Analysis, 2010, 31 (4): 303
|
8 |
WU C H, HO J M, LEE D T Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5 (4): 276- 281
doi: 10.1109/TITS.2004.837813
|
9 |
HONG W C Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J]. Neurocomputing, 2011, 74 (12-13): 2096- 2107
doi: 10.1016/j.neucom.2010.12.032
|
10 |
CHEN K Y, WANG C H Using genetic algorithms to optimize support vector regression in tourism demand forecasting[J]. Journal of Outdoor Recreat Study, 2005, 18 (1): 47- 72
|
11 |
PAI P F, HONG W C, CHANG P T, et al The application of support vector machines to forecast tourist arrivals in Barbados: an empirical study[J]. International Journal of Management, 2006, 23 (2): 375
|
12 |
CHEN K Y, WANG C H Support vector regression with genetic algorithms in forecasting tourism demand[J]. Tourism Management, 2007, 28 (1): 215- 226
doi: 10.1016/j.tourman.2005.12.018
|
13 |
CHEN K Y Combining linear and nonlinear model in forecasting tourism demand[J]. Expert Systems with Applications, 2011, 38 (8): 10368- 10376
doi: 10.1016/j.eswa.2011.02.049
|
14 |
CHEN R, LIANG C Y, HONG W C, et al Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm[J]. Applied Soft Computing, 2015, 26: 435- 443
doi: 10.1016/j.asoc.2014.10.022
|
15 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
16 |
CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv preprint. arXiv: 1406.1078, 2014.
|
17 |
LI Y F, CAO H. Prediction for tourism flow based on LSTM neural network [C] // International Conference on Identification, Information and Knowledge in the Internet of Things. Qufu: ELSEVIER, 2017: 277-287.
|
18 |
FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C] // 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
|
19 |
GUO J, WANG Z, CHEN H. On-line multi-step prediction of short term traffic flow based on GRU neural network [C] // Proceedings of the 2nd International Conference on Intelligent Information Processing. Bangkok: ACM, 2017: 11.
|
20 |
王文庆, 郭恒, 范启富. 基于CNN与GRU的航空发动机剩余寿命预测 [C] // 第37届中国控制会议. 武汉: 中国学术期刊电子出版社, 2018: 546-551. WANG Wen-qing, GUO Heng, FAN Qi-fu. Predict remaining useful life of aerospace engine based on CNN and GRU [C] // Proceedings of the 37th Chinese Control Conference. Wuhan: China Academic Journal Electronic Publishing House, 2018: 546-551.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|